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Abstract
This work presents a new computational framework for conceptual aircraft design
called AeroSandbox. This framework leverages modern techniques for automatic
differentiation developed in the optimal control and machine learning communities.
By combining these efficient gradient calculations with robust optimizers such
as IPOPT, multidisciplinary aircraft design problems of practical interest can be
solved in seconds. We demonstrate this speed with several canonical aircraft design
problems in this work, showing that performance and flexibility equals or exceeds
that of state-of-the-art tools in many cases.

This framework’s modular approach to engineering analysis allows sophisticated
aerospace problems to be constructed by connecting plug-and-play building blocks
in code. This decreases the time required to go from a qualitative vehicle andmission
concept to a quantitative, optimized performance estimate. The framework’s em-
phasis on rapid development time and run time enables an engineer to interactively
pose design questions, enabling human insight to be more readily applied to the
computational design process.
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Title: T. Wilson Professor in Aeronautics
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Chapter 1

Introduction

1.1 Engineering Design Optimization

Optimization is all around us, as it is a formalization of the ubiquitous process

of decision-making: ”How do we make the best decision with limited resources,

under some assumptions and models of the world around us?” Indeed, nearly every

designed system in our lives is the result of an optimization process, be it formal or

informal.

In the past century, advances in optimization algorithms and computing have

made it tractable to formulate and solve increasingly sophisticated problems within

a formalized optimization paradigm. This new lens has fundamentally changed

nearly every field of engineering and commerce, and mathematical optimization

underlies everything from Google Maps to economic policy to neural networks

to aircraft design1. Today, optimization is one of the workhorse tools of scientific

computing, and it is one of the problems consuming the most CPU cycles around

the world at this very moment. Its practical importance has not gone unnoticed: in

a list of the ”Top Ten Algorithms of the 20th Century” presented by Nick Higham

(former SIAM President), optimization algorithms claim two distinguished spots2

[23].

1As a colleague once quipped, ”optimization is the practice of turningmath theorems intomoney.”
2via Newton/quasi-Newton methods, ranked #1; and the simplex algorithm, ranked #9.
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Optimization is particularly useful in engineering, where design goals naturally

lend themselves to this framework. To paraphrase R. John Hansman, the goal of

engineering design is to find an optimal mapping from a project’s function to its form.

Engineers begin the design process by identifying a problem or need, and through

conceptualization and optimization they arrive at a physical form that can solve that

problem.

1.1.1 Configuration and Sizing

The process of engineering design optimization can be broadly partitioned into two

halves, loosely adapting terminology from Raymer [37]:

The Two Halves of Engineering Design

1. Configuration. Configuration involves the qualitative identifi-

cation of viable solution archetypes, and eventually, the optimal

topology of the solution. Design choices here are often discrete; for

example, aircraft configuration might involve a choice between an

airplane and a helicopter, or between propeller and jet propulsion.

Colloquially, we ask ”what should the system look like?”

Because this configuration stage is discrete and principally con-

cerned with defining the viable solution space itself, it is a highly

creative process best served by human intuition and experience.

In general, configuration is not well-served by formal optimiza-

tion: any attempt at transcribing the configuration problem to a

discrete optimization problem requires one to make unnecessary

assumptions about the solution spacea.

2. Sizing. Sizing forms the other half of design. Here, one assumes a

given specific configuration and aims to find the optimal choice of

size, weight, and power (”SWaP”) for system components. Design

12



choices here are often continuous; for example, aircraft sizing

might involve the choice of a wingspan or a desired cruise thrust.

Colloquially, we ask ”how big should the system be?”, or ”what is

the best possible version of the given configuration?”

When compared with configuration, sizing is a much more quan-

titative process - in fact, sizing is primarily based on rigorous

performance analysis. Because of this, formal optimization meth-

ods hold great potential in addressing the sizing problem, and this

the domain addressed by the new design framework presented in

this thesis.
aOften, this occurs unintentionally. For example, a formal configuration optimiza-

tion problem might ask ”how many wings should the airplane have?”, when in reality,
the true optimal solution is not an airplane, but a train.

In existing literature, this dichotomy between ”configuration” and ”sizing” has

been addressed most often in the context of early-stage conceptual aircraft design.

However, this distinction is not limited to either conceptual design or aerospace

applications; all engineering design can be split into configuration (the ”what”) and

sizing (the ”how much”).

While it may initially seem that sizing is addressed exclusively after a configura-

tion has been selected, the relationship between configuration and sizing is actually

quite symbiotic. For example, in order to decide between configurations A and B,

one needs to compare the best version of configuration A with the best version of

configuration B; here, a configuration decision depends on the result of a series of

sizing studies.

Because of this, any computational tool that aims to aid in solving the quanti-

tative ”sizing optimization problem” must seamlessly integrate with the human

”configuration design problem”. This means that a sizing optimization tool must be

fast, accessible, robust, flexible, and accurate enough to allow interactive design, a

process by which an engineer works in tandem with an optimizer to continuously

pose and answer questions in order to understand the design space.
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1.2 The Aircraft Design Problem

In this work, we focus on developing a new software tool to address the problem

of conceptual aircraft design, and in particular that of aircraft sizing. Raymer [37]

provides an excellent summary of the sizing problem:

”To [others], our process of aircraft sizing seems backwards. Most

people would assume that we draw a new aircraft design and then

determine how far it goes.

We do it the other way around. We know how far it goes – it goes as

far as the requirements say it goes. What we do not know …is how big

to draw it.”

–Raymer [37]

Here, Raymer makes the crucial observation that sizing (and, in reality, all

aircraft design) is intrinsically driven by requirements. As the requirements change,

the optimal design does too; sizing is a dynamic process.

This summary also begins to hint at a distinction between the forward problem

and the inverse problem, and the relative utility of these approaches. It is an unfor-

tunate but necessary reality that the majority of engineering education focuses on

the forward problem, also termed ”analysis” or ”simulation”: ”Given some design,

what performance is achieved?” In real-world practice, it is often far more useful to

turn the problem around and work with the inverse problem, also termed ”design”

or ”optimization”: ”Given some required performance, what does the design look

like?” Indeed, engineering design at its core is an inverse problem, not a forward

one.

1.2.1 A Canonical Design Problem

Because problem formulation is by far the most important step of any optimization

problem, it is instructive to give a canonical example of the sizing problem before

discussing methods to solve it.
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The sizing problem can be made more quantitative via formulation within a

standard mathematical optimization framework. The sizing problem is generally

representable as a continuous nonlinear program (NLP) of the form:

minimize
�⃗�

𝐽(�⃗�)

subject to �⃗�(�⃗�) ≥ 0,

ℎ⃗(�⃗�) = 0

(1.1)

This standard-form mathematical optimization problem consists of a few key

elements: variables, objective, constraints, and parameters. We typically map the

given inputs to the sizing problem to these elements as follows. Canonical examples

of each formulation element are presented, as might be applicable to the design of

an aerospace system.

1. Variables �⃗�. The degrees of freedom in the system, or the quantities that are

used to describe any particular design in the chosen parameterization. The

number of independent variables sets the dimensionality of the design space.

Canonical examples include variables parameterizing the vehicle’s outer mold

line (OML), propulsion sizing, mechanism design. For mission-driven opti-

mization, variables parameterizing the vehicle’s state and control inputs over

time throughout the nominal mission might be included here as well.

2. Objective function 𝐽(�⃗�). The design objective or performance metric, ex-

pressed as a quantity that is to be minimized.

Canonical examples include size, weight, power, and cost. If the quantity is

to be maximized (e.g., range), the quantity is negated in order to convert the

problem into a standard-form minimization problem.

3. Constraints �⃗�(�⃗�) ≥ 0, ℎ⃗(�⃗�) = 0. Constraints bound the feasible space. Con-

straints are typically drawn from two sources: physical models and given

requirements. Because of this, constraints tend to be the most interesting part

15



of a design optimization problem as they encode the vast majority of problem

information.

A problemmay contain both active3 constraints and inactive constraints. Active

constraints are those that limit the objective function at the optimal point. Each

constraint is associated a dual variable that effectively quantifies the sensitivity

of the objective to an incremental scalar addition to one side of the constraint;

for active constraints, this sensitivity is nonzero by definition.

Equality constraints can be thought of as a dimensionality reduction of the

design space: adding an equality constraint effectively projects the design

space onto the hypersurface that satisfies that equation.

4. Parameters. Parameters typically represent mutable assumptions embedded

within the objective function or constraints. Parameters are quantities that an

engineer might later perform a sweep over in order to study the feasible space

under varying assumptions.

Canonical examples might include technology factors (e.g., battery specific

energy), economic factors (e.g., fuel specific cost), risk metrics (e.g. structural

factor of safety over design loads), or mission requirements (e.g., required

range).

In this work, we present a new computational framework for solving this aircraft

design optimization problem based on modern advances in optimization methods.

Chapter 2 motivates the need for a specialized, high-performance optimization

framework for aircraft design. Chapter 3 introduces the central contribution of this

thesis: a new optimization framework. Chapters 4 and 5 elaborate more on various

components of this framework, which each chapter adding a level of abstraction

that builds on previous concepts.

3also referred to in some literature as ”tight” or ”driving”
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Chapter 2

Challenges of Aircraft Design

Optimization

Aircraft design optimization problems tend to present several unique challenges

when compared to general engineering design optimization. Here, we identify a

few of these challenges that have significant ramifications for the architecture of a

general-purpose computational framework for aircraft design optimization.

2.1 Modeling and Optimizing Dynamic Systems

Perhaps the first major challenge with aircraft design optimization is that we are

optimizing systems that are inherently time-dependent and dynamic: colloquially,

performance depends not only on what you fly, but also how you fly. Therefore, we

require a means to optimize parameters of dynamical systems. An example of this

would be optimizing the wing area of an airplane throughout a prescribed mission -

a single, fixed value must provide optimal performance when integrated across all

flight conditions.

This capability to optimize systems that must operate at many distinct operating

points is critical in aircraft design. With rare exceptions, nearly all aircraft operate

at very different operating points throughout their missions. Examples of this

time-dependency in aerospace problems abound.
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Examples of Time-Dependency in Aerospace Design

• A Boeing 787 Dreamliner has a fuel mass fraction of 44.4%a [1].

To first orderb, this implies that the aircraft’s design lift coefficient

also changes by a similar amount over the duration of a max-range

flight. An analogous fuel-burn consideration will apply to the

design of any combustion-powered flight vehicle, which represent

the vast majority of aerospace design problems.

• The performance of an orbital launch vehicle is highly dependent

on its ascent profile; complex trades between altitude, engine per-

formance, dynamic pressure, and vehicle recoverability abound,

with strong implications for even first-order design.

• The performance of urban air mobility vehicles depends heavily on

takeoff profiles, landing profiles, and emergency cases; these often

represent max-power flight conditions that size vehicle propulsion

and power systems.
aWith a max fuel load of 223,378 lbs. and a max design takeoff weight of 502,500

lbs.
bThe cruise airspeed of a commercial airliner is typically roughly constant-Mach,

and cruise altitude is assumed constant.

All of these examples point to the same conclusion, which is that engineering

systems typically must operate well at a variety of conditions. In other words,

optimality at a point condition is insufficient - designs must be robust across some

range of expected operating conditions. There are several ways that this time-

dependency is traditionally handled in engineering design optimization:

2.1.1 Approach 1: Steady-State Point Reduction

In the most general sense, the time-evolution of any dynamical system (such as an

aircraft) can be expressed as a system of nonlinear, coupled ordinary differential

equations [4]:
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d�⃗�
d𝑡 =

⎡⎢⎢⎢⎢⎣
d
(︀
𝑥1(𝑡)

)︀
d𝑡

d
(︀
𝑥2(𝑡)

)︀
d𝑡

. . .

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑓1

(︁
�⃗�(𝑡), �⃗�(𝑡), 𝑡

)︁
𝑓2

(︁
�⃗�(𝑡), �⃗�(𝑡), 𝑡

)︁
. . .

⎤⎥⎥⎥⎦ (2.1)

where: t = Time

�⃗�(𝑡) = State vector, which fully describes the state of the system at time 𝑡

�⃗�(𝑡) = External control inputs, such as a surface deflection or throttle setting

𝑓𝑖() = Functions that describe system evolution (often, equations of motion

analogous to 𝐹 = 𝑚𝑎)

The simplest method of handling time-dependency here is to make the steady

approximation that the system remains at some trim state for the entire duration

of the mission; for an aircraft, this typically means that all state variables except

for position are constant. This implies that the control vector �⃗�(𝑡) is set in order to

make this statement true; for example, throttle setting is set so that airspeed is held

constant. Under these assumptions, one can reduce the unsteady system dynamics

down to a single, steady operating point that is expected to be representative of the

operating envelope.

An example of this approach is found in SimpleAC, a canonical problem for

passenger aircraft design presented as part of GPKit, a library for aircraft design

optimization using geometric programming [7]; a full description of this design

problem is given later in Equation 4.13. The relevant example from SimpleAC here

is the constraint associated with lift-weight balance, which is given as:

𝑊0 +𝑊𝑤 +
1

2
𝑊𝑓 ≤ 1

2
𝜌𝑉 2𝐶𝐿𝑆 (2.2)

where: 𝑊0 = Empty weight

𝑊𝑤 = Wing weight

𝑊𝑓 = Fully-loaded fuel weight

𝜌 = Air density

𝑉 = Airspeed
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𝐶𝐿 = Cruise lift coefficient

𝑆 = Wing area

In other words, the constraint assumes that the aircraft’s cruise weight through-

out flight is well-approximated by the weight of the aircraft with half of its fuel burnt.

This performance relation is a steady-state point reduction that aims to address the

inherent time-dependency of the fuel-burn relation. Unfortunately, because the

effect of aircraft weight on fuel burn rate has significant nonlinearity (especially

given the large fuel fractions typical of a passenger aircraft), this is a relatively poor

assumption.

Point Reduction by Closed-Form Approximation

Amore sophisticatedway to address the time-dependency of fuel burn is the Breguet

range equation1 [37]. The Breguet equation is a closed-form model for the fuel-burn

time dependency over a given mission segment; its derivation uses energy balance

to make an implicit closure for the fuel burn rate that can then conveniently be

integrated analytically. The equation is stated in its common form in Equation 2.3:

𝑅 = 𝑉

(︂
𝐿

𝐷

)︂
𝐼𝑠𝑝 ln

(︂
𝑊𝑖

𝑊𝑓

)︂
(2.3)

where: 𝑅 = Range over a given mission segment

𝐿/𝐷 = Lift-to-drag ratio

𝐼𝑠𝑝 = Propulsor specific impulse

𝑊𝑖 = Initial total aircraft weight (beginning of mission segment)

𝑊𝑓 = Final total aircraft weight (end of mission segment, after fuel burn)

Although the Breguet equation does attempt to model the higher-order dynamic

effect of fuel burn, it is still effectively a point relation because it inevitably leads

to the question of which operating point the inputs 𝑉 , 𝐿/𝐷, and 𝐼𝑠𝑝 should be

evaluated at.
1The reason that SimpleAC uses the half-fuel-burn assumptions rather than the Breguet equation

is that the GPKit geometric programming framework is unable to model logarithms.
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Furthermore, while the Breguet equation is more accurate than a point reduction

at the half-fuel-burn state, it too has serious limitations. For example, the Breguet

range equation assumes that 𝐿/𝐷 is independent of wing loading, despite the fact

that in our 787 Dreamliner example, wing loading decreases by approximately 44%

throughout flight. Furthermore, it is assumed that propulsor 𝐼𝑠𝑝 is independent

of the fuel burn rate, a quantity that the Breguet model also predicts will decrease

by approximately 44% over the course of the flight. The Breguet equation also

leaves no clear strategy for addressing climb or descent: even if a vertical speed

energy correction ismade, the effect of continuously-varying ambient air density and

associated downstream effects on vehicle performance is not captured. Finally, path

constraints (such as an arbitrary time-varying Mach number schedule or airspace

limitations) are impossible to implement with this approach.

There is also a deeper and more subtle problem with any attempt to address

dynamics by reduction to a single operating point: design optimization within

a high-dimensional design space at a single operating point inevitably leads to

highly-sensitive designs that perform poorly in practice. This phenomenon is el-

egantly demonstrated by Drela in several airfoil design case studies, where an

optimizer exploits a single given operating point to find a high-performing design

with exceptionally-poor off-design performance [10]. As one might suspect, multi-

point optimization is a strategy to mitigate this, and Drela concludes that robust

design optimization of smooth geometry generally requires a number of operating

points roughly comparable to the number of degrees of freedom.

For all these reasons, design optimization around a single fixed operating point is

clearly insufficient for any study beyond first-order in the vast majority of aerospace

cases.
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2.1.2 Approach 2: Multiple Segments with Point Reduction (Mul-

tipoint Optimization based on Segments)

For slightly improved fidelity, one can split the given mission up into segments. For

an aircraft, a prototypical mission might consist of the following segments [37]:

1. Takeoff and Climb

2. Cruise

3. Loiter

4. Cruise

5. Descent and Landing

For each of these segments, a representative operating point (or closed-form

approximation to one analogous to the Breguet equation) is chosen. In addition,

each of these operating points might be augmented with various perturbations

about this point, allowing consideration of off-design performance.

Performance is analyzed at each of these individual points. Finally, to obtain a

scalar objective function, some reduction (e.g., integrationwith respect to time, linear

combination, or worst-case performance) is then done by combining performance

metrics across all analyzed operating points.

This is a basic example of multipoint optimization, an approach to robust design

where a design is optimized based on an aggregate of its performance at a finite

number of operating conditions.

2.1.3 Approach 3: Full Simulation via ODE Integration

Both of these methods presented thus far are steady-state or piecewise-steady-

state point reductions to what is truly an unsteady system of ODEs (as illustrated

in Equation 2.1). We have demonstrated that these simple approaches lead to

inaccurate performance analysis and drive an optimization study to brittle, overly-

sensitive designs.
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An alternative approach that alleviates both of these problems is to directly

simulate the flight vehicle throughout its mission, without any kind of a priori

segmentation. This approach significantly improves modeling fidelity and flexibility

on problems where dynamics are important (which represent the vast majority of

aerospace problems).

This ”full simulation” approach is the one most studied in the present work,

because the optimization framework described in Chapter 3 is especially suited to

solving these problems.

Selection of State Variables

To simulate the full vehicle dynamics (as something like a flight simulator might

do), we first need to identify the relevant state variables. There are several common

sources for these state variables:

• Flight Dynamics: Any rigid free-flying body has 12 state variables that de-

scribe its motion at a given moment [14]. These can be grouped into four

categories, each of which is a vector containing three degrees of freedom2:

position, orientation, velocity, and angular velocity. A Cartesian illustration of

these 12 state variables is given in Figure 2-1. Each of these 12 state variables

has an associated ODE related to the equations of motion.

• Power Systems Accounting: Any aircraft with a depletable onboard power

source (e.g., stored fuel or a battery) will have a state variable that describes

the energy remaining3. The associated ODE relates energy depletion rate to a

control input such as throttle setting.

• Propulsion State: Aerospace propulsion systems exhibit hysteresis (i.e., ”lag”)

in response to control inputs. Many notable examples, such as turbofan spool

time and quadcopter propeller inertia, result in dynamic performance limits
2In a Cartesian sense, each category (e.g. position) has 𝑥, 𝑦, and 𝑧 components in some frame
3In reality, a system might have multiple state variables here to correspond to multiple fuel tanks

or batteries, but this consideration is neglected here for simplicity.
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Position
𝑥𝑒, 𝑦𝑒, 𝑧𝑒

Orientation
𝜑, 𝜃, 𝜓

Velocity
𝑢𝑒, 𝑣𝑒, 𝑤𝑒

Angular Velocity
�̇�, 𝜃, �̇�

where: ()𝑒 =Relative to Earth
(̇) =Derivative with respect to time

𝜑, 𝜃, 𝜓 =Roll, pitch, and yaw angle, respectively
𝑥𝑒 =Downrange distance
𝑦𝑒 =Cross-track distance
𝑧𝑒 =Altitude

Figure 2-1: One possible parameterization of the 12 flight dynamics state variables.
Notation adapted from [14].

that are significant enough to have direct operational consequences. However,

these lag effects typically do not affect vehicle performance in a way that is

significant to design optimization, so they are neglected for the remainder of

this work.

• Flexible Airframes: Flexible bodies (e.g., a wing experiencing considerable

aeroelastic effects) contribute an infinite number of state variables to a dynamic

system. (In practice, this would be discretized to a large but finite number

of structural degrees of freedom.) Due to the difficulty of modeling this, we

often assume that any coupling between aeroelastic effects and rigid body

flight dynamics can be adequately treated with surrogate models as in Section

5.1; thus, this coupling is neglected for the remainder of this work.

Thus, flight dynamics and power systems accounting represent the two cate-

gories of state variables that we nearly always need to account for. Between these
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two categories, a basic aerospace system typically has 13 state variables.

However, many of the 12 flight dynamics state variables can be removed with

minimal loss of fidelity for the purposes of design optimization. Recalling that the

sizing problem is effectively performance analysis, we can remove variables that

have insignificant impact on overall vehicle performance.

The first simplifying assumption that can be made is the 2D reduction, where

the 3D dynamics are projected onto the 2D range-altitude space. In other words, in

the notation described in Figure 2-1, the state variables of roll 𝜑, yaw 𝜓, roll rate �̇�,

yaw rate �̇�, cross-track position 𝑦𝑒, and cross-track velocity 𝑣𝑒 are all assumed to be

zero and neglected. A side effect of this is that any lateral flight dynamics modes4

are neglected. This leaves six flight dynamics state variables: downrange distance

𝑥𝑒, altitude 𝑧𝑒, downrange speed 𝑢𝑒, vertical speed 𝑤𝑒, pitch 𝜃, and pitch rate 𝜃. A

prerequisite assumption for making this 2D reduction is that cross-track dynamics

have no impact on key performance metrics such as range and endurance.

A further assumption that can be made is the quasi-steady assumption, where

the pitch rate 𝜃 is assumed to be negligibly small. In the 𝜃 → 0 limit, the net

pitching moment is zero. For an airplane, this quasi-steady simplification essentially

assumes that the short-period and phugoid flight-dynamics modes are sufficiently

spectrally-separated5 that the short-period mode can be neglected.

This assumption of an instantaneous short-periodmode implies that any trimmable

flight condition6 is reachable instantaneously; in other words, the angle of attack 𝛼(𝑡)

can be directly prescribed as a control input 7. It is therefore useful to decompose

the pitch angle 𝜃 into a flight path angle 𝛾 and an angle of attack 𝛼, as shown in

equation 2.4:

𝜃(𝑡) = 𝛾(𝑡) + 𝛼(𝑡) (2.4)

4e.g. spiral mode or Dutch roll
5A full treatment of this spectral separation assumption is available in [14]
6defined as any condition where

∑︀
𝐹 =

∑︀
𝑀 = 0 can be achieved with allowable control inputs

7subject to the zero-net-moment constraint, which is typically satisfied via control surface deflec-
tions.
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where: 𝛾(t) = arctan
(︀
𝑤𝑒

𝑢𝑒

)︀
, the flight path angle

𝛼(t) = Angle of attack

With this decomposition, we eliminate onemore state variable, as 𝛼(𝑡) is a control

input and 𝛾(𝑡) is a pure function of the existing state variables 𝑢𝑒 and 𝑧𝑒. So, after

both of these assumptions, only the four flight dynamics state variables listed in

Equation 2.5 remain:

𝑥𝑒(𝑡): Downrange distance

𝑧𝑒(𝑡): Altitude

𝑢𝑒(𝑡): Downrange speed

𝑤𝑒(𝑡): Vertical speed

(2.5)

In numerical schemes, the two velocity variables 𝑢𝑒, 𝑤𝑒 are often instead pa-

rameterized as airspeed 𝑉 (𝑡) and flight path angle 𝛾(𝑡). This is because the 𝑉 -𝛾

velocity parameterization tends to be more energy-conserving upon numerical ODE

integration than the Cartesian parameterization8, as 𝑉 (𝑡) maps directly onto vehicle

kinetic energy.

Trajectory Optimization, Transcription, and Discretization

Using this ODE approach, the state of the modeled aerospace system can be repre-

sented as a series of four functions of time:

𝑥𝑒(𝑡): Downrange distance

𝑧𝑒(𝑡): Altitude

𝑉 (𝑡): Airspeed

𝛾(𝑡): Flight path angle

(2.6)

These state variables are general functions of time, and a general function space

such as this is an infinite-dimensional: specifically, it is a Hilbert space. In other

words, an infinite amount of information is required to fully describe any general
8For simplicity here, ambient wind speed is assumed to be zero, so 𝑉 =

√︀
𝑢2
𝑒 + 𝑤2

𝑒 .
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function. Even functions with a finite domain (e.g., airspeed over a fixed-duration

mission) are infinite-dimensional, as a general representation still requires an infinite

amount of information9.

A further complication here is that the optimal functions for the state variables

(collectively referred to as the trajectory) are not known a priori; indeed, this repre-

sents a trajectory optimization problem that must be solved simultaneously with the

vehicle optimization problem.

General numerical optimization in an infinite-dimensional space is intractable10,

so we must perform some transcription (a generalization of discretization) that con-

verts11 the continuous problem to a tractable finite-dimensional nonlinear program.

Many transcription approaches are possible; an excellent review is presented by

Kelly in [27] and [26]. Examples in the present work generally transcribe ODEs

with direct trapezoidal collocation; a full description of this algorithm and broader

ODE treatment as relevant to the present work follows in Section 4.7.

We make a final note here that trajectory optimization is a much more challeng-

ing task than simple numerical integration of an ODE. This is primarily because

every numerical ODE integrator has error due to discretization. In traditional ODE

integration, this is a nuisance that can be alleviated with increased resolution or

higher-order schemes (ℎ- and 𝑝-refinement strategies, respectively). However, in

trajectory optimization, the optimizer acts as an adversary that is perennially seeking

to exploit and magnify this discretization error. In essence, the optimizer will seek

any flaw with the ODE integrator and break it in a way that suits the optimization

objective. Section 4.7 details several approaches to combat this.

Implications for Design Optimization

This means that the aircraft sizing problem can be decomposed into two strongly-

coupled subproblems:
9An illustration of this is the fact that it takes an infinite number of Fourier terms to exactly

represent an arbitrary function on a finite domain.
10Calculus of variations is a powerful strategy for infinite-dimensional optimization in some cases,

though this is an analytical approach rather than a numerical one.
11or, more precisely, projects
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1. Vehicle Design, which concerns vehicle and component sizing.

2. Mission Design, which is effectively a trajectory optimization problem.

2.2 High-Dimensional Optimization

Asecond common challenge of aircraft design optimization is that design spaces tend

to be quite high-dimensional. While first-order sizing studies might only consider

a few variables (e.g., wing aspect ratio, wing area, and cruise airspeed), more

sophisticated studies can easily have hundreds or thousands of design variables.

There are two primary culprits for the high number of design variables in

aerospace problems: dynamics parameterization and outer mold line12 (OML)

parameterization. The rationale for the high dimensionality of dynamics parameter-

ization was previously addressed in Section 2.1.3: the state variables 𝑥𝑒(𝑡), 𝑉 (𝑡), etc.

are functions of time, and time discretization results in many degrees of freedom.

Outer mold line (OML) parameterization is high-dimensional for a very similar

reason: the curving, spline-like surfaces common in aerospace vehicles are also

described by functions13, and many design variables are required to represent these

functions to sufficient accuracy.

A simple and common aerospace example that illustrates this challenge is the

problem of airfoil geometry parameterization. There are several commonly used

parameterization methods, such as the Kulfan CST parameterization, B-splines, and

Hicks-Henne bump functions. However, Masters demonstrates that all methods

require a minimum of approximately 40 design variables to capture a reasonable

airfoil design space to within engineering tolerance14 [33]. Even still, 40 degrees of

freedom yields a relatively coarse representation by analysis standards, as shown in

Figure 2-2.

12The outer mold line represents the outermost, air-facing surface of the vehicle - essentially, the
”vehicle shape”.

13So, a general representation of a curved surface once again requires infinite information.
14defined here as corresponding to an aerodynamic performance error of less than one lift count

and one drag count.
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Figure 2-2: Illustration of the coarseness of an airfoil parameterized by 40 degrees

of freedom16, roughly the minimum needed for airfoil design optimization [33].

When we consider that an airplane often has several airfoils along its span, each

of which is optimized for a different local flow field, it is clear that reasonably-

accurate parameterization of an aircraft OML might easily require hundreds of

variables.

2.2.1 Addressing the Curse of Dimensionality

The high dimensionality of aircraft design optimization problems is a challenge,

because the volume17 of the feasible space tends to grow exponentially with respect

to the number of dimensions. This phenomenon is referred to in the literature as

the ”curse of dimensionality” [32, 26]. The curse of dimensionality makes many

optimization approaches wholly intractable, so it is important to consider which

optimization methods might be effective on high-dimensional problems.

All optimization methods are a tradeoff between exploration and exploitation

[18, 25]. Exploratory algorithms ”leave no stone unturned”, spendingmany function

evaluations exploring the design space to increase the confidence that an optima is

a global one. Exploitative algorithms hone in on a local optima as fast as possible,

dramatically reducing the number of function evaluations required at the expense of

16Assumes each node contributes one degree of freedom; a reasonable approximation because
only normal node movement affects OML shape.

17Colloquially defined here as ”the number of meaningfully-different feasible points”
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reduced confidence in global optimality. In practice, this classification is a spectrum:

this is visualized in Figure 2-3, where several popular optimization algorithms from

Kochenderfer [29] and Nocedal [34] are roughly labeled.

Exploration Exploitation

Sampling

Full-factorial,

Latin hypercube,

Space-filling algo.

Population

& Stochastic

Genetic algorithms,

Particle swarm,

Sim. annealing

Local or 1st-order

Nelder-Mead,

Coordinate descent,

SGD,

Conj. gradient,

2nd-order Gradient

Newton’s method,

Quasi-Newton,

SQP

Figure 2-3: A Short Taxonomy of Optimization Methods: Exploration vs. Exploita-

tion.

Neither approach is generally superior to the other, and problems that are triv-

ial with one approach may be wildly intractable with another. In fact, the aptly-

named ”No Free Lunch” theorem of optimization, as demonstrated by Wolpert

and Macready [41], proves that increased optimizer performance on one class of

problems will always come at the expense of performance in another. In effect,

proper selection of an optimization algorithm for a problem requires some a priori

intuition about the structure of the objective function and constraints18.

When solving aircraft design optimization problems, there are two primary rea-

sons that it becomes prudent to lean as heavily as possible towards the exploitation

side of the optimization spectrum:

1. High-dimensional optimization is completely intractable with exploratory

methods due to the curse of dimensionality. This difference in tractability

is extreme: in a review of optimization methods for aerodynamic design
18In some optimization methods, namely Bayesian optimization, this a priori intuition is formally

specified as a Bayesian prior, allowing a quantifiable, continuously-varying choice between explo-
ration and exploitation.
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optimization, Lyu et al. found that population-based methods required ap-

proximately 106 times as many function evaluations to reach optimality19

compared to second-order gradient-based methods [31] for a 100-variable

problem20.

2. Objective and constraint functions tend to be smooth, or they can be well-

approximated by smooth functions with minimal labor. More precisely, func-

tions tend to be at least𝐶1-continuous, whichmakes themmuchmore amenable

to second-order gradient-based methods.

Because of this, second-order gradient-based methods are easily the tool of

choice for aircraft design optimization. Although critics often point out that no

guarantees of global optimality can be made, this is often far less of a concern than

perhaps initially perceived. As it turns out, most aerospace sizing problems are

unimodal despite their complexity. Martins concludes in [32] that ”it is assumed

far too often that any complex problem is multimodal, but that is often not the

case” and ”therefore, one should assume that a function is unimodal until proven

otherwise.”

2.3 Addressing Coupled Problems

A final challenge of aircraft design optimization is that problems are highly coupled

between disciplines. This phenomenon is illustrated in Figure 2-4, which shows the

driving dependencies that might be considered in the design of a passenger aircraft.

Many of these interactions are examined thoroughly by Drela in literature related to

the TASOPT design code21 [13, 15].

19as approximated by a small tolerance 𝜖 on Lagrangian stationarity and constraint violation
20which is a relatively small problem by most aircraft design standards
21TASOPT focuses on the design optimization of modern commercial transport aircraft, exploiting

new advances in propulsion and composite structures while addressing new concerns such as noise
and emissions.
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Thrust force af-

fects trajectory, but

𝑉∞, 𝜌∞, 𝑇∞ affect

propulsor performance

Figure 2-4: Commonly-studied subsystem dependencies for the design of a passen-

ger aircraft. Arrows denote influence of one subsystem on another.

A key challenge that is observed in Figure 2-4 is the presence of internal closure

loops, or implicit relationships between subsystems. Implicit relations are those that

cannot be enforced by explicit, step-by-step calculation; instead, they represent a

nonlinear relationship that must be enforced iteratively.
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Traditional aircraft design methodologies (such as the one described in detail by

Raymer [37]) resolve these implicit relationshipswith a ”guess and check” approach:

to ”close” any given design, an initial guess is assumed at some point, and the loop

is iterated until closure. Mathematically, this is analogous to solving a system of

nonlinear equations by Gauss-Seidel iteration22; it is not the worst approach for

small problems, but it scales poorly to problems with many interacting disciplines.

Furthermore, closing these implicit relations via ”guess and check” means that we

would effectively perform ”sub-iterations” at each iteration of our optimization

algorithm; this is obviously far from ideal if computational performance is desired.

Superior methods of solving this closure problem are implemented in the present

work and presented in Section 4.6.1.

2.3.1 The Origins of Coupling

Coupling between disciplines is not unique to aerospace design, although we ob-

serve that aerospace tends to be one of the more coupled and complex engineering

disciplines. We posit that this is the case for two reasons:

1. On a free-flying aerospace system, there is rarely something that can act as

a global source or sink for conserved quantities such as mass, momentum,

energy, heat, and charge. If we imagine some classical engineering design

problems, we observe a similar trend:

• The design of a typical cantilevered beam assumes a fixed support.

• The design of a typical circuit assumes an electrical ground.

• The design of a typical automobile engine assumes some place for heat

rejection.

By contrast, aerospace systems have nothing to ”push off of”: each force and

moment must be perfectly balanced with another to achieve steady, level
22Another analogue to the ”guess-and-check” approach is coordinate descent optimization, which

mimics the same pattern of sequential, orthogonal, axis-aligned movement throughout the variable
space.
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flight. This requirement for balance between disciplines often manifests as a

cross-discipline constraint, leading to coupling.

2. Aerospace systems tend to have low margin, which leads to high performance

sensitivities with respect to size, weight, and power. These sensitivities con-

spire to encourage multifunctional and highly-integrated design. While this

design philosophy leads to enhanced performance, it inevitablymeans that any

subsystem’s allocation to size, weight, or power comes at the direct expense of

another’s.

2.4 Summary

Here, we have discussed several key challenges that are especially prominent in

aircraft design optimization:

1. Aerospace systems are inherently dynamic, and hence require careful model-

ing.

2. Aerospace systems are high-dimensional, which precludes the tractable use

of many kinds of optimization algorithms.

3. Aerospace systems are highly-coupled, which means an optimizer must be

scalable to large problems and robust to strong nonlinearities.

Because of all these challenges, computational aircraft design optimization is a

problem where careful algorithmic choices are critical for success.
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Chapter 3

AeroSandbox: A Differentiable

Optimization Framework

3.1 Overview

In recognition of the challenges with aircraft design optimization described in

Chapter 2, we introduce a computational framework called AeroSandbox (ASB).

AeroSandbox is a tool for solving design optimization problems for large, multi-

disciplinary engineered systems. Examples and data structures tend to focus on

aerospace problems, but the underlying numerics are generalizable to aid in the

design of any complex engineered system.

AeroSandbox is a collection of interoperable tools that can be grouped into three

broad categories, listed here in increasing order of abstraction:

1. Core Tools: An optimization framework that allows for the formulation and

solution of engineering problems, and a numerics framework that enables

seamless automatic differentiation for efficient gradient computation.

2. Modeling Tools: Tools for representing geometry (the backbone of engineer-

ing design) in an optimizer-friendly format, and tools that aid in creating

custom surrogate models for user-defined physics via interpolation or fitting.
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3. Discipline-Specific Tools: Collections of analysis tools aimed at specific air-

craft design disciplines, such as aerodynamics, propulsion, and structures.

These tools and are typically low- and medium-fidelity analyses (vortex lat-

tice aerodynamics, blade-element propeller modeling, Euler-Bernoulli beam

modeling, etc.) that are written from scratch to be optimizer-friendly and

modular.

Each category of tools acts as an abstraction layer built upon the foundation

below it. Relationships between these various tools are represented visually in

Figure 3-1, which also serves as a good outline for the remainder of this work. All

of these tools are described in further detail throughout Chapters 4 and 5.

ASB Core: Opti Stack
Optimization interface

ASB Core: Numerics
Unified numerics stack

CasADi [3]
Automatic differ-
entiation layer

NumPy [21]
Non-differentiated

numerics

IPOPT [40]
Optimizer

ASB Surrogate
Modeling Tools ASB Geometry Stack

ASB Discipline-
Specific Tools

More
abstract

More
foundational

Figure 3-1: Dependency relationships between AeroSandbox (ASB) components
and external libraries. Arrows point toward dependencies.

36



3.2 Implementation Details

3.2.1 Availability

AeroSandbox is primarily written in Python 3, the lingua franca of scientific com-

puting at the time of writing. It is cross-platform, and distribution via the Python

Package Index (PyPI) makes it a one-command installation on all platforms; full

installation instructions are available in Appendix A. The source code is freely

available on GitHub1 and released under the permissive MIT License2.

3.2.2 Documentation and Tutorials

At the time of writing, AeroSandbox is documented in several ways:

1. A tutorial3 consisting of a series of dozens of Jupyter notebooks introduces the

features and syntax of AeroSandbox. Each lesson is incremental and concise,

starting with the very basics and gradually building upmore complex features.

This tutorial can be downloaded and viewed locally in the /tutorials/

subdirectory, or it can be viewed online without any downloads.

2. A user guide4 provides a comprehensive introduction to the key submodules

within AeroSandbox and their relationships. This user guide can be opened

at any time from the Python shell with:

1 import aerosandbox as asb
2 asb.docs() # Opens the ASB documentation in a web browser.

3. Every class and function of AeroSandbox is documented extensively inline.

1Available at https://github.com/peterdsharpe/AeroSandbox
2The MIT License effectively allows any form of noncommercial or commercial use, modification,

or redistribution.
3Available at https://github.com/peterdsharpe/AeroSandbox/tree/master/

tutorial
4Available at https://github.com/peterdsharpe/AeroSandbox/blob/master/

aerosandbox/README.md

37

https://github.com/peterdsharpe/AeroSandbox
https://github.com/peterdsharpe/AeroSandbox/tree/master/tutorial
https://github.com/peterdsharpe/AeroSandbox/tree/master/tutorial
https://github.com/peterdsharpe/AeroSandbox/blob/master/aerosandbox/README.md
https://github.com/peterdsharpe/AeroSandbox/blob/master/aerosandbox/README.md


At the time of writing, AeroSandbox has a comment:code ratio5 of 0.96:1.

Documentation can be produced for any AeroSandbox object using syntax

analogous to:

1 import aerosandbox as asb
2 help(asb.Opti) # Prints documentation for the `Opti` object.

3.2.3 Testing, Versioning, and Reliability

Hundreds of unit tests are written throughout AeroSandbox’s code to verify correct

functionality. After any code change to the AeroSandbox repository, all of these

tests are automatically run6 on a new Linux installation to ensure no unintentional

breaking changes were made. This process is then repeated for the three most recent

versions of the Python interpreter supported by the popular Anaconda distribution

for scientific computing with Python [2].

Upon version increment, upload to distribution servers is also contingent on

unit test success. Every effort is made to increment versions in accordance with

the principles of semantic versioning, where the version number of a new release

carries meaningful information about backwards-compatibility at various levels.

This ensures that code can be meaningfully version-locked as needed in production

environments.

Together, these features make AeroSandbox a reliable codebase for use on real

problems ”in the wild”. This reliability had led to significant adoption, with over

160,000 downloads of AeroSandbox from PyPI at the time of writing.

5Ratio between number of lines. Ignores blank lines. Counts each Jupyter notebook text paragraph
as a single comment line.

6Continuous integration provided via GitHub Actions
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Chapter 4

Core Tools: Optimization and

Numerics

4.1 Optimization Stack

The heart of AeroSandbox is the Opti stack: an object-oriented framework for for-

mulating and solving the continuous, nonlinear, nonconvex optimization problems

that occur frequently in engineering design.

The Opti stack is explicitly designed to be easy to learn and use for users

who are not optimization specialists: design problems can be specified in natural,

human-readable syntax, as demonstrated in Listing 1. Furthermore, many problem

transformations (e.g. scaling heuristics, equation re-ordering, sparsity exploitation)

are employed without user input in order to enhance solver speed and numerical

stability on ill-posed problems.

4.1.1 Optimization Algorithms

The underlying optimization code used in AeroSandbox is IPOPT, a large-scale

optimizer for general nonlinear programming written in C++ by Wächter [40].

IPOPT is a modern second-order gradient-based (quasi-Newton) filter line-search

optimizer. Constraints are enforced using a primal-dual interior-point method, and
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a restoration algorithm is used to allow infeasible starts and stabilize the iteration

process. More details about interior-point methods for nonlinear programming are

available in Nocedal and Wright [34].

A second-order gradient-based method was chosen due to the high dimensional-

ity of aerospace design problems, as described in Section 2.2. Empirically, this leads

to good performance. Lyu et al. benchmarked a suite of optimization algorithms

including IPOPT on an optimization test problem as well as an engineering design

optimization problem; IPOPT was found to perform competitively, even amongst

other quasi-Newton algorithms such as SNOPT and SLSQP [31]. Wächter tested the

IPOPT code on 954 canonical problems from the CUTEr test set and found a success

rate of 93.8%, markedly above other competitive codes at the time of publication

[40]. Furthermore, IPOPT is generously released under an open-source license,

enabling it to be freely bundled with CasADi, and, by extension, AeroSandbox.

Yet another reason that IPOPT is an attractive choice of optimizer is that it grace-

fully handles sparsity in the constraint Jacobianmatrix. Time-dependent engineering

problems, such as trajectory optimization problems, often lead to sparsity in the

constraint Jacobian; exploiting this by integrating with sparse linear algebra libraries

can result in significant speed improvements.

One drawback of using IPOPT is that, unlike most interior-point optimization

algorithms, intermediate iterates do not necessarily stay feasible, even if the initial

guess is feasible. This is demonstrated in Lyu et al., where the Rosenbrock example

using IPOPT shows infeasible intermediate iterates1 despite a feasible start [31].

One implication of this attribute is that physics models used in AeroSandbox should

extrapolate sensibly: physically-plausible (even if not strictly-speaking correct) results

should be returned for any design variable inputs; regardless of feasibility. This

increases the likelihood that the associated gradient information at the iterate will

send subsequent iterates back to the feasible space.

1Of course, the algorithm quickly returns to the feasible space and terminates at a point that is
both feasible and optimal.
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4.1.2 Automatic Differentiation for Efficient Derivatives

IPOPT, like any gradient-based optimization algorithm, relies on accurate com-

putation of gradient (and Hessian) information in order to progress its search.

Traditionally, this gradient computation has been the severe computational bottle-

neck limiting performance of large-scale gradient-based optimization.

Over the years, many strategies have been developed in order to compute this

gradient. AeroSandbox employs a technique called automatic differentiation (AD)

that allows highly efficient, accurate, and scalable gradient computation, imple-

mented through the CasADi differentiation library [3]. Here, we describe automatic

differentiation as it is used in AeroSandbox and how this method compares to other

gradient computation techniques.

It is instructive to first examine several other popular gradient computation

methods to clarify what automatic differentiation is not:

Finite-Differencing (Numerical Differentiation)

One of the more intuitive methods of gradient computation comes from the limit

definition of the derivative. First considering a scalar-valued function 𝑓(𝑥) : R1 →

R1, we note that:

𝜕𝑓

𝜕𝑥

⃒⃒⃒
𝑥=𝑥0

= lim
ℎ→0

𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

ℎ
(4.1)

For numerical computation of the derivative, some small but nonzero ℎ value

is used, providing an approximation to the local derivative. This idea can also be

generalized to functions withmultiple inputs by repeated application of this method.

Specifically, if 𝑒𝑖 represents the unit vector in the 𝑖th direction, and we take some

function 𝑓(�⃗�) : R𝑛 → R1:

𝜕𝑓

𝜕𝑥𝑖

⃒⃒⃒
�⃗�=�⃗�0

≈ 𝑓(�⃗�0 + ℎ𝑒𝑖)− 𝑓(�⃗�0)

ℎ
(4.2)

This calculation is then repeated for each of the 𝑛 directions, at which point a
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gradient vector can be constructed:

∇𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜕𝑓
𝜕𝑥1

𝜕𝑓
𝜕𝑥2

. . .

𝜕𝑓
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ (4.3)

The finite-difference method has the significant advantage that 𝑓(�⃗�) can be

any black-box function; that is, no information needs to be known about the inner

workings of the function in order to compute a derivative with this method. This

makes finite-differencing an excellent ”last-resort” method when other, more so-

phisticated methods fail. However, there are also several severe drawbacks with

finite-differencing.

The most significant drawback is that finite differencing scales extremely poorly

to gradient computation of high-dimensional functions, such as those that often

occur in aircraft design. For a function 𝑓(�⃗�) : R𝑛 → R1, gradient computation

requires 𝑛 evaluations of Equation 4.2. Of course, the 𝑓(�⃗�0) term can be reused after

the first evaluation, but the 𝑓(�⃗�0 + ℎ𝑒𝑖) term must be evaluated 𝑛 times. Thus, every

gradient computation requires 𝑛+ 1 evaluations of the function 𝑓 , leading to 𝒪(𝑛)

time scaling.

This problem is exacerbated for higher derivatives, such as the local Hessian of

𝑓(�⃗�) at �⃗�0. Computation of the Hessian requires 𝒪(𝑛2) function evaluations, which

is even more intractable for large 𝑛.

A second drawback of gradient computation via finite differences is that it

leads to inaccurate gradient computation. Following Equation 4.2, the gradient

approximation clearly becomes more accurate as ℎ is decreased (i.e. the truncation

error is reduced). However, in the small-ℎ limit, computational evaluation of this

equation requires the subtraction of two numbers that are infinitesimally close. This

leads to large floating-point error that dwarfs the truncation error. Thus, there is an

optimal step size ℎ that balances these two error sources and leads to minimum error.

If we consider computation of a first-order forward difference (as in Equation 4.2)
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using double-precision floating-point arithmetic with precision2 𝜖 = 2−53 ≈ 10−16,

this optimal ℎ is roughly3 𝒪(10−8). More generally, first-order finite differences

with optimal step size generally have an accuracy of 𝒪(
√
𝜖). This phenomenon is

illustrated graphically in [32].

One might try to increase gradient precision by using a second-order difference

scheme, such as the central difference method described in Equation 4.4:

𝜕𝑓

𝜕𝑥𝑖

⃒⃒⃒
�⃗�=�⃗�0

≈ 𝑓(�⃗�0 + ℎ𝑒𝑖)− 𝑓(�⃗�0 − ℎ𝑒𝑖)

2ℎ
(4.4)

However, this has the unfortunate side-effect of exacerbating the first drawback

of finite-difference methods; namely, gradient computation in 𝑛 dimensions now

requires 2𝑛 function evaluations. The accuracy improvement is also mediocre;

although the optimal step size drops, gradient accuracy remains only at 𝒪(𝜖2/3), or

≈ 𝒪(10−10) for double-precision arithmetic.

Complex-Step Differentiation

Amodification of the finite-difference approach that attempts to alleviate the floating-

point arithmetic problem is the complex-step method. The complex-step method

works on any complex-differentiable (also known as analytic or holomorphic) function.

Fortunately, most mathematical operators used in engineering design (e.g. elemen-

tary functions) are analytic, and compositions of analytic functions are also analytic.

For any such analytic function, the Cauchy-Riemann equations hold. For the pur-

poses of complex-step differentiation, only the first Cauchy-Riemann equation is of

particular importance; it is listed in Equation 4.5:

For the complex decomposition 𝑓(𝑥+ 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),
𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

(4.5)

2defined here as the difference between 1 and the next-largest representable number
3for an example function with a Hessian locally equal to the identity matrix
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Noting that 𝜕𝑢
𝜕𝑥

= 𝜕𝑓
𝜕𝑥

holds for points on the real line4 (which are the points of

interest in engineering design), we can rewrite a forward-difference derivative rule

as:

𝜕𝑓

𝜕𝑥

⃒⃒⃒
𝑥=𝑥0

≈ lim
ℎ→0

𝑓(𝑥0 + 𝑖ℎ)− 𝑓(𝑥0)

𝑖ℎ
(4.6)

Or, after simplification (noting that for practical 𝑓 , 𝑓(𝑥) ∈ R if 𝑥 ∈ R):

𝜕𝑓

𝜕𝑥

⃒⃒⃒
𝑥=𝑥0

≈ lim
ℎ→0

Im
(︀
𝑓(𝑥0 + 𝑖ℎ)

)︀
ℎ

(4.7)

This complex-step differentiation has several advantages over finite-differencing.

First, it is higher-order - a complex-step forward-difference has 𝒪(ℎ2) truncation

error, as opposed to the 𝒪(ℎ) error seen with a real-step forward-difference. How-

ever, more importantly, floating-point error does not occur as there is no subtractive

cancellation in the derivative computation. This means that an arbitrarily small step

size ℎ can be taken, invariably leading to a gradient error at machine precision (i.e.

𝒪(𝜖)).

However, some problems of finite-differencing remain. Most prominently, gradi-

ent computation for functions of 𝑛 dimensions still requires 𝒪(𝑛) function evalua-

tions, which is unacceptably slow for large problems.

On the other hand, complex-step differentiation introduces several new disad-

vantages.

First, there are very few situations where use of the complex-step derivative is the

optimal choice: it requires the bizarre scenario of a black-box function that happens

to already support complex math with proper analytic continuation. This is almost

never the case, as engineering tools in aerospace5 rarely expect complex inputs, and

most black-box analysis tools are written in statically-typed languages. In statically-

typed languages (e.g. C++, C, Fortran), enabling complexmath requires editing the

source code, something that is not possible for black-box functions. In dynamically-

4for functions of engineering design interest
5barring special cases such as signal analysis, controls, or radar-cross-section computation
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typed languages (e.g. Python, Julia, MATLAB), complex-step differentiation can

usually be performed easily enough, although operator overloading with dual

numbers6 is more accurate and generally much more computationally efficient.

Secondly, adding complex math support often results in a significant compu-

tational bottleneck, as compilers and libraries are often not optimized for high-

performance complex math, instead focusing on real floating-point arithmetic.

Thirdly, no clear extension exists to use complex-step differentiation to compute

higher-order derivatives, such as the Hessian. The Cauchy-Riemann equations only

constrain on the first partial derivative, so different or extended techniques are

needed for higher-order derivatives.

Finally, the claimed precision advantage of complex-step over finite-differencing

is misleading, as switching from real to complex numbers typically doubles the

number of stored bits for a floating-point number. Consider the following illustrative

example:

A real double-precision floating-point arithmetic number (”double”)

is represented by 64 bitsa. A real forward finite difference with optimal

step size produces an error of size 𝒪(
√
𝜖) ≈ 𝒪(10−8).

A complex double is represented by 128 bits (64 for the real part, and

64 for the imaginary part). A complex-step derivative produces error

of size 𝒪(𝜖) ≈ 𝒪(10−16). It is more accurate, but computation is slower

because all variables take up twice memory as before.

A fairer comparison is to examine a quad-precision floating-point

arithmetic number, which is also represented by 128 bits. A real forward

finite difference here produces an error again of size 𝒪(
√
𝜖), although

since 𝜖 has shrunk to ≈ 10−34, this corresponds to an error of 𝒪(10−17).
aas described in the IEEE 754 standard

So, a complex-step derivative does not produce any additional derivative preci-

sion over finite-difference when variable bit count (and accordingly, computational

6effectively a basic implementation of forward-mode automatic differentiation, described later
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speed) is controlled for. Therefore, the major claimed benefit of complex-step dif-

ferentiation is lost, and this method is largely a mathematical curiosity with little

practical benefit.

Symbolic Differentiation

Symbolic differentiation is the process of computing an explicit derivative (either

by hand or with the aid of a computational symbolics engine) and hard-coding that

as the derivative to a function of interest. For example:

Function of interest: 𝐿(𝜌, 𝑉, 𝐶𝐿, 𝑆) =
1

2
𝜌𝑉 2𝐶𝐿𝑆

Gradient: ∇𝐿 =

⎡⎢⎢⎢⎣
𝜕𝐿
𝜕𝜌

. . .

𝜕𝐿
𝜕𝑆

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
2
𝑉 2𝐶𝐿𝑆

. . .

1
2
𝜌𝑉 2𝐶𝐿

⎤⎥⎥⎥⎦ (4.8)

These gradients can then be directly coded to be used as needed. An advantage

of this approach is that gradients can generally be computed at machine precision.

However, the𝒪(𝑛) scaling problem still exists, as a gradient computation requires

the evaluation of 𝑛 partial derivatives.

Furthermore, symbolic differentiation suffers from ”expression swell”. Exam-

ination of any elementary differentiation table in a calculus table will reveal that

derivatives of functions tend to be longer than the functions themselves. There-

fore, explicit representations of gradients of complicated functions tend to grow to

massive length, rendering them intractably large to manage and evaluate.

Closer examination of this expression swell reveals another interesting point,

however: often, many of the subexpressions within the gradient equation are re-

peated. The reason for this is best shown by example: if we consider the product

rule d[𝑎(𝑥)·𝑏(𝑥)]
d𝑥 = 𝑎′(𝑥)𝑏(𝑥) + 𝑎(𝑥)𝑏′(𝑥) and the fact that 𝑎(𝑥) and 𝑎′(𝑥) will naturally

share many subexpressions, it follows that a symbolic derivative will tend to have

many repeated subexpressions.
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As it turns out, we can alleviate the problem of expression swell entirely by

re-using intermediate evaluations of subexpressions. In practice, this means re-

laxing the requirement that all steps of the derivative computation be ”flattened”

into a single, explicit representation. As a consequence, our gradient is no longer

represented by an equation that can be evaluated, but rather by a procedure that can

be followed in order to evaluate the gradient at a given point: our gradient is a code

function rather than amathematical function. This approach happens to be identical to

”forward-mode automatic differentiation”, which is covered in the following section.

Automatic Differentiation

Automatic differentiation (also known as autodiff, AD, backpropagation, or algorithmic

differentiation) is a method of computing derivatives that was pioneered in the

machine learning (specifically, neural network) and optimal control communities.

AD works by directly examining the source code of the function being differenti-

ated. It exploits the fact that any computational function, no matter how complex,

can be broken down into compositions of a small set of elementary7 functions. These

functions can then be differentiated individually using known derivative rules and

chained together using the chain rule.

This decomposition of a function of interest into its individual operations leads

to the idea of a computational graph, which depicts the flow of information from

through a function in code. This graph is also known as a trace in some literature,

which is an apt term as it allows one to trace a computer’s path through a function.

An example of such a graph is depicted in Figure 4-1.

7Paraphrasing Liouville, this includes arithmetic, trigonometric, power/logarithmic, and hyper-
bolic functions, along with inverses thereof.
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A computational graph

for 𝑓(𝑎, 𝑏) = 2𝑎𝑏 + sin(𝑎)

𝑎 2

×𝑏

×

+

sin()

𝑓(𝑎, 𝑏)

Figure 4-1: A computational graph, as would be used for automatic differentiation.

Computing a function value given inputs is straightforward using this computa-

tional graph; one supplies the known inputs and progressively works through the

graph to produce an answer.

Computing a derivative given inputs using this method is just as simple. To

compute 𝜕𝑓
𝜕𝑎

in the example of Figure 4-1, one first evaluates derivative with respect

to inputs: 𝜕𝑎
𝜕𝑎

= 1, 𝜕𝑏
𝜕𝑎

= 0, and so on. Then, each function is evaluated using its

respective derivative rule (e.g. the product rule), and the result is 𝜕𝑓
𝜕𝑎

.

The procedure just described is termed ”forward-mode automatic differenti-

ation”, as the derivative is propagated forward through the computational graph.

Forward-mode AD computes the gradient of a function 𝑓(�⃗�) : R𝑚 → R𝑛 in 𝒪(𝑚)

time complexity; that is, the cost is proportional to the number of function inputs.

An alternative and far more powerful method is reverse-mode automatic dif-

ferentiation. Here, one computes a derivative by working backwards through the

computational graph. Because we are working backwards, this leads to some non-

intuitive questions: for example, for each constituent function we must now ask

”how do the inputs of this function change with respect to the output?”. This is
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effectively a function-by-function adjoint approach, which are strung together via

the computational graph to produce a derivative.

The performance benefit that can be realized in exchange for the non-intuitive

nature of reverse-mode AD is massive. Reverse-mode AD computes the gradient of

a function 𝑓(�⃗�) : R𝑚 → R𝑛 in 𝒪(𝑛) time complexity; that is, the cost is proportional

to the number of function outputs. Specifically, Griewank proved that the cost of

gradient computation is at most five times the cost of evaluating a scalar function,

independent of the number of inputs [19].

Reverse-mode AD is far more useful than forward-mode in practice, as most

functions 𝑓(�⃗�) : R𝑚 → R𝑛 of practical interest have 𝑛 ≤ 𝑚 (and often, 𝑛 = 1);

that is, most engineering functions map from a high-dimensional space to a low-

dimensional one. An example of this is in aerodynamic analysis, where a CFD run

might have millions of inputs (e.g. mesh node locations) but only a few outputs

of interest (e.g. net lift and drag). It makes intuitive sense that 𝑛 ≤ 𝑚 typically:

optimization problems have many variables but generally just one objective. Fur-

thermore, if this were not the case, the input space could not span the output space8,

so the model would not yield any additional independent information9.

Automatic differentiation has several other key advantages over other gradient

computation techniques. One of these is that the space of elementary functions is

closed under differentiation; that is, the derivative of each function is exclusively

a composition other (differentiable) elementary functions. Therefore, automatic

differentiation allows one to compute arbitrarily high order derivatives (e.g. the

Hessian, which is critical for optimization) using the same framework [6].

AD is also capable of following arbitrarily complex control flow like loops,

conditional statements, object-oriented data structures, and recursion. This means

that nearly any scientific analysis can be differentiated using AD, even in cases where

a symbolic gradient would be nearly impossible to write.

Reverse-mode automatic differentiation therefore represents a method to com-

8barring functions like space-filling curves that do not typically appear in models of physics
phenomena

9as measured by the number of independent degrees of freedom
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pute gradients of scalar functions to machine precision with 𝒪(1) complexity. This

revolutionary improvement over other gradient methods enables efficient scaling to

arbitrarily-large design optimization problems.

Because of these reasons, automatic differentiation10 is the gradient computation

method employed by AeroSandbox. This automatic differentiation is provided by

CasADi, an open-source tool for automatic differentiation and nonlinear optimiza-

tion developed by members of the optimal control community [3].

4.2 Syntax and Mathematical Examples

In order to solve a design optimization problem with AeroSandbox, one first creates

an empty optimization environment by instantiating this Opti class. After creating

this class instance, one can declare variables, constraints, and parameters in arbi-

trary order. Upon calling the Opti.solve() method, these problem elements are

automatically differentiated as-needed, constructed into a standard-form nonlinear

program, solved via an interface to IPOPT, and returned to the user.

Despite the sophisticated inner workings of AeroSandbox’s Opti stack, an ex-

tensive effort has been made to abstract these details away from the user unless

requested; sensible defaults and heuristics are used throughout AeroSandbox to

make usage as easy as possible. For advanced users, it is useful to note thatAeroSand-

box’s Opti class inherits and extends the corresponding Opti class from CasADi;

more sophisticated optimization settings can be accessed directly through syntax

shared with CasADi as needed.

4.2.1 Example: Constrained Rosenbrock Problem

Here, we illustrate the simplicity of the Opti stack by formulating the constrained

Rosenbrock problem [38], a common test problem for gradient-based optimization

frameworks. The canonical version of the constrained Rosenbrock problem is as

follows:
10primarily reverse-mode, but also forward-mode for certain computations
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minimize
𝑥, 𝑦

(1− 𝑥)2 + 100(𝑦 − 𝑥2)2

subject to 𝑥2 + 𝑦2 ≤ 1

(4.9)

The objective function landscape, as shown in Figure 4-2, is a shallow, curved

valley that is constrained to the unit disk. A global minimum exists at (𝑥, 𝑦) ≈

(0.7864, 0.6177); an analytical derivation of this is shown in Appendix C.1.

𝑥−1.0 −0.5 0.0 0.5 1.0

𝑦

−1.0

−0.5

0.0

0.5

1.0

20406080100120140

Figure 4-2: Constrained Rosenbrock Function

This problem is a particularly useful example in the context of engineering design

optimization, as it has many mathematical qualities which tend to be relevant in

engineering problems. Specifically, both the Rosenbrock problem in Eq. 4.9 and

many engineering problems are:

1. Continuous: Design variables are not constrained to be integer, drawn from

an enumeration, or otherwise discrete.
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2. Constrained: Constraints, typically given by physics or requirements, limit

the allowable design space.

3. Nonlinear: Both the objective function and all constraints are, in general,

nonlinear functions of design variables.

4. Nonconvex: The objective function and constraints are not necessarily con-

vex functions of the design variables. In formal terms, the these functions

need not satisfy the convex inequality; in informal terms, we effectively make

no restrictions on the curvature of these functions. In the case of the Rosen-

brock problem, the point (0, 1) is locally nonconvex, with objective Hessian

eigenvalues (principal curvatures) of 200 and −398.

5. Unimodal: Allowing nonconvex objective functions admits multimodal11

problems, which raises the concern of global optimality. However, in practice,

enough nonconvex aerospace engineering problems are indeed unimodal that

current best practices are to assume unimodality until proven otherwise [32, p.

212]. Indeed, the Rosenbrock problem is unimodal despite its nonconvexity.

6. Poorly-scaled: At regions of interest in the design space (e.g. initial guess, op-

timal solution, intermediate points), the Hessian matrix of the Lagrangian (or

here, the objective) has a large condition number. In the case of the constrained

Rosenbrock problem, cond(𝐻) ≈ 1054 at the optimum.

Poor scaling typically occurs in engineering problems because of differences in

orders of magnitude and units between quantities of interest. For example, a

wing skin thickness might measure one millimeter, while mission range could

be on the order of hundreds of kilometers. Simple linear problem scaling

(discussed later) can alleviate this issue to some degree, but it is practically

impossible to entirely eliminate scale differences given a priori problem knowl-

edge. Furthermore, because the key metric for solver performance here is

the Hessian condition number, relying on this approach alone requires an
11Definition: having more than one local optima
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engineer to accurately estimate the curvature of the performance function - a

markedly more difficult task than simply guessing the scale of a quantity.12

The Rosenbrock problem can be solved in AeroSandbox using the simple Python

syntax in Listing 1.

1 def rosenbrock(x, y):
2 return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
3
4 import aerosandbox as asb # Import the AeroSandbox library.
5
6 opti = asb.Opti() # Create a new optimization environment.
7
8 x = opti.variable(init_guess=4) # Define optimization variables.
9 y = opti.variable(init_guess=4)

10
11 opti.subject_to(x ** 2 + y ** 2 <= 1) # Define a constraint.
12
13 opti.minimize(rosenbrock(x, y)) # Define an objective.
14
15 sol = opti.solve() # Solve the problem.
16
17 x_opt, y_opt = sol.value(x), sol.value(y) # Extract the solution.
18 print(x_opt, y_opt) # Display the solution.

Listing 1: AeroSandbox solution of the constrained Rosenbrock problem.

Initializing from a guess of (𝑥, 𝑦) = (4, 4), this code retrieves the correct solution

for the optimum of (𝑥, 𝑦) = (0.7864, 0.6177) after 9 iterations.

A point of particular note here is that our initial guess of (𝑥, 𝑦) = (4, 4) lies outside

the feasible design space. Unlike some interior-point optimization algorithms,

IPOPT does not require a feasible initial guess. This is a particularly important

feature in aircraft design, where the high number of cross-discipline constraints

often makes a priori identification of a feasible point laborious.

12This technique also requires domain-specific expert knowledge, which may not be available.
Thus, an optimizer that gracefully handles poorly-scaled problems is always desirable.
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4.2.2 Example: 5,000-Dimensional Rosenbrock Problem

In the previous example, we solved the constrained Rosenbrock problem. This was

a 2-dimensional problem, so we individually created two variables: 𝑥 and 𝑦.

For high-dimensional problems, it is bothmore concise andmore computationally-

efficient to vectorize variables. A vector of variables is a powerful construct, as it

allows vector and matrix operations to be used with identical notation to a standard

mathematical optimization formulation.

This can be demonstrated by finding the minimum of the 𝑛-dimensional Rosen-

brock problem, as given by Virtanen et al. [39]:

minimize
�⃗�

𝑛−1∑︁
𝑖=1

100(𝑥𝑖+1 − 𝑥2𝑖 )
2 + (1− 𝑥𝑖)

2 (4.10)

For any 𝑛 except 4 ≤ 𝑛 ≤ 7, this function is unimodal [30]. Here, we take

𝑛 = 5000 in order to demonstrate the scalability of automatic differentiation (as

described in Sect. 4.1.2) and variable vectorization. This results in a minimum at

�⃗� = [1, 1, . . . , 1], corresponding to a function value of 0.

This problem can be coded in AeroSandbox as shown in Listing 2.
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1 import aerosandbox as asb
2 import aerosandbox.numpy as np
3
4 N = 5000
5
6 opti = asb.Opti() # Create an optimization environment.
7
8 x = opti.variable(init_guess=4 * np.ones(shape=N)) # Create a vector

variable 𝑥 of length 𝑁.→˓

9
10 x1 = x[:-1] # Effectively 𝑥𝑖

11 x2 = x[1:] # Effectively 𝑥𝑖+1

12
13 f = np.sum(100 * (x2 - x1 ** 2) ** 2 + (1 - x1) ** 2)
14
15 opti.minimize(f) # Define an objective.
16
17 sol = opti.solve() # Solve the problem.
18
19 x_opt = sol.value(x) # Extract the solution.

Listing 2: AeroSandbox solution of the 5,000-dimensional Rosenbrock problem.

The correct solution of �⃗� = [1, 1, . . . 1] is found after just 25 iterations. Querying

this solution further, we find that our objective function was evaluated 49 times13.

It is instructive to consider that we have effectively found the zero of the 5,000-

dimensional nonlinear function 𝜕𝑓
𝜕�⃗�

with only 49 function evaluations, a feat that

initially seems to violate information theory - how do 49 evaluations give enough

information to solve 5,000 equations? This apparent paradox is resolved by noticing

that the gradient evaluation via reverse-mode automatic differentiation contributes

5,000 pieces of information for each pass through the computational graph. This

empirically demonstrates why efficient gradient computation is the key to fast opti-

mization: each pass through the computational graph gives us orders of magnitude

more useful information than a single function evaluation.

We make particular note of the speed of solving this problem, recalling that the

problem is a nonlinear, nonconvex optimization problem of 5,000 variables. Despite
13More than one function evaluation may occur per iteration as a result of the line search that

occurs at each iteration.
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this, on a single workstation laptop14, AeroSandbox solves this problem in just 0.284

seconds.

We can quantify this scaling by solving this same 𝑛-dimensional problem for

various 𝑛, as shown in Figure 4-3. We notice here that the asymptotic time com-

plexity is (empirically) roughly 𝒪(𝑛0.9), indicating sublinear scaling with respect

to dimensionality. We can identify several factors that contribute to the sublinear

scaling curve seen in Figure 4-3:

• The cost of a single objective function evaluation scales as 𝒪(𝑛) due to the

length of the vectors being operated on.

• The cost of a single gradient evaluation is proportional to the cost of a function

evaluation regardless of 𝑛, thanks to reverse-mode automatic differentiation.

This means that gradient evaluation is also 𝒪(𝑛). (With a finite-difference

method, this would be 𝒪(𝑛2).)

• The number of iterations required for convergence is roughly independent of

the problem dimensionality.

• A small overhead cost (here, ≈ 14 milliseconds) is associated with interfacing

with IPOPT. For repeated optimization runs (as in the case of a parametric

design study), this cost can be eliminated through preservation of the compu-

tational graph.

14Intel i7-8750H CPU, Windows 10
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Figure 4-3: N-Dimensional Rosenbrock Performance.

4.3 Simple Aircraft Design Examples

In order to demonstrate that this high-performance optimization framework is not

limited to mathematical examples, we present several aircraft design test problems.

These also serve as examples to benchmark against other comparable frameworks.

4.3.1 Example: Simple Wing

A common aerospace design problem is wing drag minimization. Here, we imple-

ment one such problem in AeroSandbox and demonstrate its solution.

The problem at hand is identical to the one specified in Section III of Hoburg

and Abbeel [24], with a few constants tweaked to match the formulation in [28],

[35], and other related works. It is restated here in its natural engineering syntax:
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Simple Wing
minimize
A, 𝑆, 𝑉,𝑊,𝐶𝐿

𝐷

subject to 𝑊 ≤ 𝐿cruise,

𝑊 ≤ 𝐿takeoff,

𝑊 = 𝑊fuselage +𝑊wing

(4.11)

where: 𝐷 = Cruise drag

A = Wing aspect ratio (here, the wing is assumed to be rect-

angular)

𝑆 = Wing area

𝑉 = Cruise airspeed

𝑊 = Total weight

𝐶𝐿 = Cruise lift coefficient

We are also given the following physics models:

• The chord 𝑐 =
√︀
𝑆/A, from geometric relations.

• The drag 𝐷 = 1
2
𝜌𝑉 2𝐶𝐷𝑆

• The drag coefficient 𝐶𝐷 = CDA0

𝑆
+ 𝑘𝐶𝑓

𝑆wet
𝑆

+
𝐶2

𝐿

𝜋A𝑒

∘ 𝐶𝑓 = 0.074 ·Re−0.2, the Schlichting turbulent flat plate bound-

ary layer model

∘ Re = 𝜌𝑉 𝑐
𝜇

• The cruise lift 𝐿cruise =
1
2
𝜌𝑉 2𝐶𝐿𝑆

• The takeoff lift 𝐿takeoff = 1
2
𝜌𝑉 2

min𝐶𝐿,max𝑆

• The wing weight𝑊wing = 𝑊w, structural +𝑊w, surface

∘ 𝑊w, structural = 𝑊w, c1 · 𝑁A1.5
√
𝑊0𝑊𝑆

𝜏

∘ 𝑊w, surface = 𝑊w, c2 · 𝑆

where: 𝑘 = 1.2, the form factor.

𝑒 = 0.95, the Oswald efficiency factor.
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𝜇 = 1.78× 10−5 kgm−1 s−1, the sea-level dynamic viscosity of

air.

𝜌 = 1.23 kg/m3, the sea-level density of air.

𝜏 = 0.12, the airfoil thickness-to-chord ratio.

𝑁 = 3.8, the ultimate load factor.

𝑉min = 22 m/s, the takeoff airspeed.

𝐶𝐿,max = 1.5, the takeoff lift coefficient.

𝑆wet/𝑆 = 2.05, the wetted area ratio.

CDA0 = 0.031 m2, the fuselage drag area.

𝑊0 = 4940 N, the aircraft weight excluding the wing.

𝑊w, c1 = 8.71×10−5 m−1, a coefficient used to calculatewingweight.

𝑊w, c2 = 45.24 Pa, another wing weight coefficient.

This problem can be solved in AeroSandbox using the code shown in Appendix

C.2. AeroSandbox requires initial guesses, which are chosen as rounded order-of-

magnitude estimates following Kirschen [28]15. Solution via the code in Appendix

C.2 produces the following result, which is identical to that found in [24]:

Table 4.1: Solution of Simple Wing (Eq. 4.11), found with AeroSandbox.

Figure of Merit Optimal Value

Minimum drag 𝐷 303.07 N

Aspect ratioA 8.46

Wing area 𝑆 16.44 m2

Airspeed 𝑉 38.15 m/s

Weight𝑊 7341 N

Lift Coefficient 𝐶𝐿 0.4988

This problem, which consists of 5 design variables and 3 constraints, is solved

predictably quickly from our initial guess in just 11 milliseconds and 25 iterations.
15Specific figures for initial guesses can be viewed in the code in Appendix C.2.
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Comparison with solves in [35] and [28] confirms that this is the global optimum;

this can also be proven analytically.

On Initial Guesses and Solver Robustness

A common concern for any optimizer when working with practical problems is

its robustness to bad initial guesses. The optimization algorithms in AeroSandbox

are much more robust to poor initial guesses than other nonlinear program (NLP)

optimizers.

For example, Kirschen and Hoburg found that various general NLP solvers

performed exceptionally poorly on this same Simple Wing problem [28]. Kirschen

gave this problem with the exact same initial guess to commercial interior-point

and SQP optimizers built into MATLAB’s fmincon() solver. Neither optimizer

was able to successfully converge to the solution, while AeroSandbox was; a com-

parison is presented in Table 4.2. In addition, the numbers from Kirschen in Table

4.2 correspond to IP and SQP runs with exact analytical gradients16, so the stark

performance difference between these methods and AeroSandbox is purely due to

differences in optimization algorithms, not gradient quality.

In Table 4.2, we also benchmark AeroSandbox against GPKit17, a specialized

framework for solving geometric programs such as Simple Wing [7]. Despite the

fact that GPKit is a specialized tool for this particular class of problem, the general-

purpose AeroSandbox solver consistently achieves convergence faster on the same

hardware.

16Runs in Kirschen [28] without exact analytical gradients, i.e. finite-difference gradients, perform
even worse.

17GPKit is benchmarked here with its open-source cvxopt backend in order to facilitate a fair
”open-source vs. open-source” comparison.
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Table 4.2: Comparison of optimization methods: Simple Wing problem with same

initial guesses.

Optimizer
Optimality Speed

Drag (Objective) Optimal? Runtime Func. Evals.

IP, Kirschen [28] 593.76 N 37.7 s 𝑎 10,530

SQP, Kirschen [28] 438.66 N 0.1 s 𝑎 83

GPKit 303.07 N X 0.026 s 𝑏 -

AeroSandbox 303.07 N X 0.022 s 𝑏 29

𝑎 Tested by Kirschen [28] on unspecified hardware.
𝑏 Both tested on an Intel i7-8750H CPU Windows 10 laptop; median over 10 runs.

Runtime comparisons should be made within groups 𝑎 and 𝑏, not across them.

We can demonstrate the robustness of AeroSandbox further by modifying the

initial guesses to more extreme values. Here, we arbitrarily select the airspeed 𝑉 ,

which is nominally initialized to a value of 100m/s. We can change this initial guess

by two orders of magnitude in either direction (to 1 m/s and 10, 000 m/s); in both

cases, the problem still solves to optimality in 32 iterations or less, and runtime is

essentially unaffected.

Although this robustness is obviously problem-dependent in a rigorous sense, in

practice we find that this robustness to initial guesses holds consistently. As long as

variables are initialized to approximately within two orders of magnitude in either

direction of their optimal value, convergence is likely. Guessing a value within this

4-order-of-magnitude window is generally trivial based on engineering intuition.

This extreme robustness is observed in part due to the robustness of the IPOPT

algorithm - in particular its line search and restoration phases. This robustness

is also due to a series of heuristic problem transformations that are carried out

automatically in AeroSandbox; these are detailed further in Section 4.3.2.
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4.3.2 Problem Transformations

A variety of heuristic problem transformations are automatically performed by

AeroSandbox in an attempt to make problems more amenable to a general-purpose

NLP solver. These heuristic transformations can dramatically improve solver perfor-

mance and can also be manually specified by advanced users. Here, we discuss a

few of these heuristics.

Problem Scaling

When formulating optimization problems to be passed to NLP solvers, it is critical

to scale design variables so that the problem is well-scaled. Here, ”scaling” means

that a variable is multiplied or divided by some constant before it is passed into the

optimizer, so that the optimizer sees a value that is ideally on the order of 10−2 to

102.

The primary step of the IPOPT solver within AeroSandbox is a quasi-Newton

line-search direction calculation, which is theoretically scale-invariant. However,

due to floating-point arithmetic precision limits, scaling can significantly affect con-

ditioning of the Lagrangian Hessian and constraints Jacobianmatrices. Furthermore,

IPOPT’s interior-point barrier algorithm is not scale-invariant, so scaling is critical

on constrained problems (which represent the vast majority of cases).

The issue of scaling is especially important in engineering design optimization,

where problems frequently have variables that span many orders of magnitude if

left unscaled. For example, a composite skin thickness might be on the order of 10−3

m, while an internal stress might be on the order of 108 Pa.

In AeroSandbox, the scale factor for a given variable can be easily set at initial-

ization using the following inline syntax:

1 import aerosandbox as asb
2
3 opti = asb.Opti()
4 x = opti.variable(init_guess = 5, scale = 10)
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Similarly, the scale of vector variables can be set with either a constant or a vector

of equal length (in which case scales are applied element-wise). Because scaling

is so critically important, AeroSandbox will automatically scale all variables using

heuristics based on the initial guess.

We can illustrate the importance of appropriate problem scaling and some of

AeroSandbox’s heuristics by example. Here, we recreate a NLP scaling example

problem originally formulated by Durbin and the CasADi team [17]. Durbin et al.

used this example to illustrate the importance of scaling, although in their study,

scales were manually specified. Here, we recreate this study but perform all scaling

using AeroSandbox’s automatic heuristics. The problem is formulated as follows:

Rocket Optimal Control (formulated by Durbin et al. [17])

A rocket launches from the ground at time 𝑡 = 0 and must reach an

altitude 𝑦 = 100 km at time 𝑡 = 100 s. Dynamics are treated as 1D. We

seek the trajectory that minimizes fuel use (or equivalently, maximizes

final rocket mass, as the initial mass is constrained). A control vector

𝑢(𝑡) that specifies the thrust profile is optimized.

minimize
𝑦(𝑡), �̇�(𝑡),𝑚(𝑡), 𝑢(𝑡)

−𝑚final

subject to d𝑦
d𝑡 = �̇�,

d�̇�
d𝑡 = 𝑢/𝑚− (9.81 m/s2),

d𝑚
d𝑡 =

−𝑢
(300 sec) · (9.81 m/s2) ,

𝑦(0) = 0,

�̇�(0) = 0,

𝑚(0) = 500× 103 kg,

𝑦final = 100× 103 m,

𝑚 > 0, 𝑢 ≥ 0, 𝑦 ≥ 0

(4.12)
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For example purposes and following [17], we transcribe this problemusing direct

collocation with forward-Euler integration across 100 points uniformly spaced in

time, a technique described further in Section 4.7. The optimal trajectory after

solution is given in Figure 4-4.
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Figure 4-4: Optimal trajectory of the Rocket Optimal Control problem (Eq. 4.12),

found with AeroSandbox.

We now examine the effect of scaling on the optimizer performance when solv-

ing this problem. We solve this problem once with scaling heuristics disabled18

and a second time with scaling heuristics enabled19. In both cases, we provide

initial guesses based on a bit of first-order kinematics intuition from the problem
18Implemented by passing scale=1 at variable initialization.
19Enabled by default.
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description:

𝑦guess(𝑡) =
100× 103 m

100 s · 𝑡

�̇�guess(𝑡) =
100× 103 m

100 s
𝑚guess(𝑡) = 500× 103 kg

𝑢guess(𝑡) = (9.81 m/s2)× (500× 103 kg)

Although both the unscaled and scaled runs eventually solve the problem, the

difference in solution speed is dramatic; this is illustrated in Figure 4-5. The solution

with scaling heuristics is clearly much more stable, and convergence is achieved in

14 rather than 85 iterations.
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Figure 4-5: Convergence of the Rocket Optimal Control problem (Eq. 4.12), depend-

ing on scaling.

A stark difference is also seen in terms of wall-clock time to solve, as presented

in Table 4.3; the auto-scaling heuristic results in an 8x speedup.
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Table 4.3: Effect of auto-scaling on Rocket Optimal Control problem runtime.

Run Type Runtime𝑎

Without auto-scaling 0.320 s

With auto-scaling 0.038 s

𝑎 Both tested on an Intel i7-8750H CPU Windows 10 laptop; median over 10 runs.

Log-Transformation

Another transformation that can be easily employed inAeroSandbox is log-transformation.

Log-transformation is the process of applying a logarithm to a variable before pass-

ing it to the optimizer, such that the algorithm optimizes the quantity ln(𝑥) rather

than 𝑥. (The same can also be done to constraints and objectives.)

Log-transformation for engineering design optimization was extensively studied

by Boyd [5], with subsequent applications by Hoburg [24], Ozturk [35], Kirschen

[28], and many others. The mathematical rationale behind log-transformation is

that certain types of expressions20 that sometimes appear in engineering problems

can be guaranteed to become convex under log-transformation. This approach,

when taken to the extreme, results in geometric programming (GP).

In the context of a general NLP framework like AeroSandbox, the usefulness

of log-transformation can vary widely problem-to-problem. Here, we make some

general observations about the pros and cons of this technique:

• Pros:

∘ Many engineering expressions become convex or more-convex when

log-transformed, which can lead to faster, more stable solutions.

∘ Many scaling issues disappear under log-transformation, as many or-

ders of magnitude can be spanned with relatively little change in the
20Known as monomial and posynomial expressions, as defined in [24]
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underlying log-transformed variable.

∘ We more faithfully represent our design intent. Performance often most

intuitively considered multiplicatively, not additively. For example, in

aircraft design, a 10% drag decrease is significant no matter the scale;

however, the significance of a 10 N drag decrease is entirely dependent on

aircraft scale. In other words, log-transformation effectively nondimen-

sionalizes a design variable, as the log-transformed quantity is unitless.

∘ For quantities that would otherwise need to be constrained to be positive

(e.g. vehicle mass), we can eliminate one constraint: the constrained

problem has been transformed into an unconstrained one.

• Cons:

∘ In some cases, log-transformation can transform an engineering expres-

sion from a convex one into a nonconvex one. Therefore, the benefit of

log-transformation is highly case-dependent.

∘ Log-transformation is yet another nonlinearity, which can make the prob-

lemmore difficult to solve. In particular, the affine constraints that appear

often in engineering design become nonlinear (and sometimes noncon-

vex) under log-transformation, leading to much worse performance. In

practice, this performance loss from nonlinearity becomes quite signifi-

cant for high-dimensional problems.

∘ If the optimal value of a variable is ever zero or negative (e.g. thrust

in the Rocket Optimal Control example of Eq. 4.12), convergence on

the log-transformed problem is not possible. (The problem becomes

unbounded.)

Because of all these reasons, we generally find that it is best to start modeling

a design problem without log-transformations, and to only add them in later if

the problem physics justify it. In AeroSandbox, this can be done by passing the

log_transform=True argument at variable declaration.
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4.3.3 Example: Simple Aircraft (SimpleAC)

Now armed with more understanding of the problem transformations available

in AeroSandbox, we can also demonstrate performance on a more sophisticated

aircraft design problem. This problem, known as SimpleAC, models a simple aircraft

by extending the Simple Wing problem in Section 4.3.1 with fuel weight and volume

models. It was proposed by Hoburg in [24] and is reproduced by both Ozturk [35]

and Kirschen [28]. It is restated here in full form:

Simple Airplane (SimpleAC)

minimize
A, 𝑆, 𝑉,𝑊,𝐶𝐿,𝑊𝑓 , 𝑉f, fuse

𝑊𝑓

subject to 𝑊 ≥ 𝑊0 +𝑊𝑤 +𝑊𝑓 ,

𝑊0 +𝑊𝑤 +
1

2
𝑊𝑓 ≤ 𝐿cruise,

𝑊 ≤ 𝐿takeoff,

𝑊𝑓 ≥ TSFC · 𝑡flight ·𝐷,

𝑉f, wing + 𝑉f, fuse ≥ 𝑉𝑓

(4.13)

where: A = Wing aspect ratio (here, the wing is assumed to be rect-

angular)

𝑆 = Wing area

𝑉 = Cruise airspeed

𝑊 = Total weight

𝐶𝐿 = Cruise lift coefficient

𝑊𝑓 = Fuel weight

𝑉f, fuse = Volume of fuel in fuselage

All of the physics models from Simple Wing (Eq. 4.11) apply, and we

are also given the following new physics models:

• The flight time 𝑡flight = Range/𝑉
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• The fuselage drag area is no longer constant, instead scaling with

fuel volume as CDA0 = 𝑉f, fuse/(10 m)

• The total fuel volume 𝑉𝑓 =
𝑊𝑓

𝑔𝜌𝑓

• The fuel volume in the wing 𝑉f, wing = 0.03𝑆1.5
A

−0.5𝜏

Constants are identical to Simple Wing (Eq. 4.11), except for the follow-

ing redefined ones:

• 𝑘 = 1.17, the form factor.

• 𝑒 = 0.92, the Oswald efficiency factor.

• 𝜇 = 1.775× 10−5 kgm−1 s−1, the sea-level dynamic viscosity of air.

• 𝑁 = 3.3, the ultimate load factor.

• 𝑉min = 25 m/s, the takeoff airspeed.

• 𝐶𝐿,max = 1.6, the takeoff lift coefficient.

• 𝑆wet/𝑆 = 2.075, the wetted area ratio.

• 𝑊0 = 6250 N, the aircraft weight excluding the wing and fuel.

• 𝑊w, c1 = 2× 10−5 m−1, a wing weight coefficient.

• 𝑊w, c2 = 60 Pa, another wing weight coefficient.

The following new constants are added:

• 𝑔 = 9.81 m/s2, Earth gravity.

• 𝜌𝑓 = 817 kg/m3, the density of fuel.

• Range = 1000 km, the aircraft mission range.

• TSFC = 0.6 h−1 = 1.67×10−4 s−1, the thrust-specific fuel consump-

tion.

SimpleAC clearly borrows many models from Simple Wing, although it has a

different optimization objective: instead of minimizing drag, here we minimize fuel

burn for a fixed mission range. Intuitively, we expect this to drive the optimizer to

faster designs, and this is what is observed.

This problem is solved in AeroSandbox, employing log-transformation on all

variables, as discussed in Section 4.3.2. Code to solve this problem is available in
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Appendix C.3. This converges to a solution in 23 milliseconds and 14 iterations. The

results of this AeroSandbox solve are shown in Table 4.4.

Table 4.4: Solution of SimpleAC (Eq. 4.13), found with AeroSandbox.

Figure of Merit Optimal Value

Fuel weight𝑊𝑓 937.8 N

Aspect ratioA 12.10

Wing area 𝑆 14.15 m2

Cruise airspeed 𝑉 57.11 m/s

All-up weight𝑊 8705 N

Cruise lift coefficient 𝐶𝐿 0.2901

Fuel volume in fuselage 𝑉f, fuse 0.0619 m3

We can once again benchmark performance against GPKit, the optimization

library that SimpleAC is derived from. This comparison is shown in Table 4.5. Here,

AeroSandbox solves the same engineering design optimization problem approxi-

mately six times faster than GPKit.

Table 4.5: Comparison of optimization methods: SimpleAC problem.

Optimizer
Optimality Speed

𝑊𝑓 (Objective) Optimal? Runtime Func. Evals.

GPKit 937.8 N X 0.141 s 2 (GP iters.)

AeroSandbox 937.8 N X 0.023 s 16

Both tested on an Intel i7-8750H CPU Windows 10 laptop; median over 10 runs.
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4.4 Numerics Stack

One of the primary reasons for AeroSandbox’s speed is its use of end-to-end auto-

matic differentiation, as described in Section 4.1.2. In order for automatic differenti-

ation to work, we need to be able to make a computational graph that contains each

mathematical operation that is applied throughout our optimization formulation.

This means that a standard Python numerics library such as NumPy cannot be

directly used, because some of these functions break the computational graph - they

are not differentiable, in a code sense.

Instead, we require a custom differentiable numerics library. Learning a custom

numerics library sounds like a daunting task for the end user at first, and in other

frameworks, it can be: consider that the two major modern machine learning li-

braries, PyTorch and TensorFlow, each include custom submodules for differentiable

numerics. Both of these submodules use package-specific syntax; in effect, they are

a new programming language within a programming language.

AeroSandbox takes a different approach that attempts to make using this numer-

ics library as seamless as possible. AeroSandbox does not introduce new package-

specific syntax for its numerics library. Instead, AeroSandbox deliberately overloads

syntax from the ubiquitousNumPypackage, which has syntax that is already second-

nature to any user who performs scientific computing in Python21 [21]. Thus, the

AeroSandbox numerics library can be imported using a drop-in replacement for the

standard NumPy import, as shown in Figure 4-6.

import numpy as np import aerosandbox.numpy as np
becomes

Figure 4-6: Standard import of the AeroSandbox numerics stack.

The aerosandbox.numpy numerics stack is a superset of NumPy, so any func-

tion contained in the normal NumPy library can be used for general-purpose com-

puting.
21This practice of extending NumPy is inspired by similar approaches in the Google JAX [6] and

autograd packages.
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TheAeroSandbox numerics stackworks by stitching together the (non-differentiable)

NumPy package with the (automatic-differentiable) CasADi numerics library, intel-

ligently switching between the two libraries as-needed based on input data types.

NumPy is a very large package, and not every NumPy function has been given

automatic differentiation support. However, the list of supported differentiable

functions is quite extensive, including:

Differentiable Functions using NumPy-like Syntax in the AeroSand-

box Numerics Stack

• 1Dand 2Darray operations (initialization, indexing, concatenation,

reshaping, etc.)

∘ Higher-dimensional array operations, in the slower ”object”

mode.

• Elementary operators

∘ Arithmetic

∘ Trigonometry (including inverse, hyperbolic, and inverse

hyperbolic functions)

∘ Powers, exponentials, and logarithms

∘ Absolute values, min(x, y), max(x, y), and other miscel-

laneous common operators

• Conditionals, loops, and boolean logical expressions

• Linear algebra

∘ Vector operations (dot, cross, outer products etc.)

∘ Vector and matrix norms

∘ Vector and matrix products

∘ Linear solves, Moore-Penrose pseudoinverses

∘ Eigenvalue decomposition and other factorizations

• Many common utility functions (e.g. linspace())
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• Interpolation, including N-dimensional and higher-order

• Numerical differentiation and integration

• etc.

Advanced solvers for specific subproblems (DAEs, nonlinear iterative

rootfinders, QP solvers, SOCP solvers, adaptive-step integrators, etc.)

are all available by directly interfacing with the underlying CasADi

library; these are mutually-compatible with the AeroSandbox numerics

stack. Speaking more broadly, the breadth of functions supported here

is largely indebted to the richness of the CasADi library [3].

In practice, this list of differentiable functions covers every single practical engi-

neering design case that has been examined to date.

In the event that a function without differentiation support is called on an object

that requires differentiation (e.g. any composition of an optimization variable), an

error is thrown. The AeroSandbox numerics stack automatically falls back on the

(non-differentiable) NumPy backend on objects that do not require differentiation,

as this is more speed- and memory-efficient.

All functions in the AeroSandbox numerics library are continuously tested with

both numerics backends and cross-compared to verify reliability; this testing cam-

paign is further detailed in Section 3.2.3.

4.5 Limitations

Although the AeroSandbox core (which consists of the optimization and numerics

stacks) is quite powerful, it is not without a few limitations.

4.5.1 Restriction to Glass-Box Models

Models used in AeroSandbox must be glass-box. In other words, models must be

coded in Python using aerosandbox.numpy numerics. Mathematically, nearly

every engineering analysis can fit into this framework. In practice, however, users
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sometimes wish to use existing legacy black-box codes (e.g. a RANS CFD code

written in C++), but this is not possible as it breaks the automatic differentiation

trace.

Although these black-box models cannot be used as-is, there are still several

workarounds that allow these models to be integrated into a differentiable frame-

work:

• Surrogate modeling: Instead of directly using the black-box model, we draw

samples from the model that are then used to construct a differentiable surro-

gate model. This approach is tractable when the input space of the black-box

model can be well-sampled. Specifically, this works well when the model’s

input dimensionality, runtime, and nonlinearity are relatively low. Surrogate

modeling approaches are highly integrated into AeroSandbox; popular surro-

gate modeling techniques such as fitting and interpolation are discussed in

Chapter 5.

• Rewrite the code: For simpler black-box models, it is often possible to re-write

thesemodels from scratch in AeroSandbox syntax, allowing them to be directly

integrated into the code.

• Future work aims to integrate black-box modeling into AeroSandbox via finite

differencing or a user-provided gradient. This is described more in Section

6.2.

4.5.2 Requirements on Differentiability and Continuity

Models used in AeroSandbox should be generally be composed of differentiable

functions for good performance. Fortunately all functions of engineering interest

are differentiable over almost all22 of their domain.

However, consider the following trivial optimization problem:

22using ”almost all” in the mathematical sense
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minimize
𝑥

|𝑥| (4.14)

This problem can be directly posed to AeroSandbox, as abs() is a function

included in the AeroSandbox numerics stack:

1 import aerosandbox as asb
2 import aerosandbox.numpy as np
3
4 opti = asb.Opti()
5 x = opti.variable(init_guess=1)
6 opti.minimize(np.abs(x))
7 sol = opti.solve()

Unfortunately, this optimization program fails to converge and throws an error.

We can rationalize this by considering the perspective of the optimizer. The second-

order IPOPT optimizer is constructing a local quadratic representation23 of the

design space as the optimization process progresses.

For the function 𝑓(𝑥) = |𝑥|, we can construct a quadratic representation based

on local information at almost all points, as 𝑓 ′(𝑥) and 𝑓 ′′(𝑥) are defined almost

everywhere. However, at 𝑥 = 0, these derivatives are undefined, so there is no clear

quadratic approximation24. Therefore, the optimizer fails.

From this, we can construct a rule of thumb:

Continuity Guidelines for Gradient-Based Optimization

If the objective function or any of the constraints are not 𝐶1-continuousa

at the optimum, convergence will almost certainly fail.
ameaning they are continuous and have a continuous first derivative

We note that this discontinuity in |𝑥| at 𝑥 = 0 is only troublesome because it is

the optimum, so the optimizer asymptotically approaches it. If the discontinuity is

not at the optimum, it poses no problem. In the extreme case, it is even possible to
23For memory reasons, this representation is deliberately approximate, similar to the L-BFGS

algorithm.
24Even generalized definitions of the derivative lead to a second derivative that is similar to a Dirac

delta function, which causes a numerical singularity.
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use a differentiable solver like AeroSandbox to solve problems with infinitely many

discontinuous, non-differentiable points, as demonstrated in Appendix C.4.

Unfortunately, optimization problems with discontinuities (in either their objec-

tive or constraints) tend to have optima at these discontinuities. This is rigorously

true in the case of linear programming, where it is guaranteed that an optimum (if

it exists) will be at a vertex of the feasible polytope25. Furthermore, 𝐶1-discontinuity

(localized to specific points) can be found in a non-negligible number of engineering

models: vector norms and piecewise functions are often not 𝐶1-continuous.

Therefore, it is worthwhile to identify several methods for addressing disconti-

nuities and non-differentiability in engineering problems.

Method 1: Rewrite the Problem

Often, it is possible to simply rewrite the problem in a way that doesn’t use discon-

tinuous functions. The optimization problem described in Eq. 4.14 can be rewritten

in a continuous manner by splitting the absolute value into two linear constraints26:

minimize
𝑥, 𝑦

𝑦

subject to 𝑦 ≥ 𝑥,

𝑦 ≥ −𝑥

(4.15)

Equation 4.15 is easily solved as-is inAeroSandbox, and this is by far the preferred

approach to resolving discontinuities if the original formulation allows.

However, this isn’t always possible - to speak precisely, this is not possible when

the objective function or constraint is nonconvex27 at the discontinuity itself. An

example of this is the following function:

25This optimum may not be unique, depending on problem construction. This observation is the
foundational theorem of the simplex method.

26Subgradient methods are another approach to rewrite convex but not differentiable functions,
though they are not detailed here.

27If the objective function or constraint is 𝐶0-discontinuous, it is nonconvex by definition.
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𝑓(𝑥) =

⎧⎪⎨⎪⎩−𝑥 for 𝑥 < 0

(𝑥− 1)2 − 1 for 𝑥 ≥ 0

(4.16)

which is visualized in Figure 4-7. If the non-differentiable point at 𝑥 = 0 needed to

be resolved, other methods are required.

−1 0 1 2
𝑥

−1

0

1

𝑓
(𝑥
)

Nonconvex
discontinuity
in 𝑓 ′(𝑥)

Figure 4-7: The function described in Eq. 4.16.

Method 2: Construct a Continuous Approximation

One such alternative method to resolve discontinuous functions is to approximate

them with continuous ones. Note that, unlike the previous method, this is actually

changing the problem rather than simply rewriting it, so the optimum will also be

only an approximation to that of the original problem.

On the canonical example from Eq. 4.14 of 𝑓(𝑥) = |𝑥|, we can introduce two

possible continuous approximations that are given by Kelly [26]:

Approximation 1: 𝑓1(𝑥) = 𝑥 tanh(𝑥/𝛼)

Approximation 2: 𝑓2(𝑥) =
√
𝑥2 + 𝛼2

(4.17)

where, in both cases, 𝛼 represents a parameter that controls the amount of approxi-
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mation. These functions are depicted in Figure 4-8.
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Approximations of 𝑓(𝑥) = |𝑥|

𝑓(𝑥) = |𝑥|

𝑓1(𝑥) = 𝑥 tanh(𝑥/𝛼)

𝑓2(𝑥) =
√︀

𝑥2 + 𝛼2

Figure 4-8: Two approximations to 𝑓(𝑥) = |𝑥| as given in Eq. 4.17.

Because both of these approximations are 𝐶1-continuous everywhere, minimiza-

tion of these approximate functions is easily performed with AeroSandbox. We note

that the second approximation, 𝑓2(𝑥) =
√
𝑥2 + 𝛼2, is generally a superior choice, as

it preserves convexity. This means that one can guarantee global optimality upon

subsequent arbitrary convex transformations of the function.

Generalized Methods to Fix Discontinuities

Of course, |𝑥| is far from the only discontinuous function that one would want to

optimize, and creating these continuous approximators for each individual function

would be quite tedious. We can therefore present a few generalized methods to fix

discontinuities that work on a wider array of problems.
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Softmax One of the more common sources of 𝐶1-discontinuity is the max() opera-

tor, which yields an element-wise maximum of its inputs. To resolve this, a convex

operator called ”softmax”28 can be used to replace the max() operator. Softmax is

defined as:

max(𝑥, 𝑦) ≈ softmax(𝑥, 𝑦) = ln(𝑒𝑥 + 𝑒𝑦) (4.18)

It can be generalized to allowan arbitrary number of inputs aswell as a ”hardness”

parameter that details the amount of approximation relative to the max() operator.

Both of these extensions are detailed further by Cook [8], and a visualization of this

generalized softmax is given in Figure 4-9.
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𝑓2(𝑥)

𝑓3(𝑥)

softmax(𝑓1, 𝑓2, 𝑓3;𝑥)

Figure 4-9: The Softmax function

Softmax requires careful numerical implementation that prevents floating-point

overflowor underflowdue to the exponentiation in its definition; this is implemented

28also known as ”logsumexp” in some fields
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in the AeroSandbox numerics stack29.

Sigmoid Blending For general, nonconvex discontinuities, we can blend between

the functions on either side of a piecewise discontinuity by using a sigmoid transi-

tion function. This ”blend” operator30 is effectively a smooth approximation to a

conditional operator.

To define this blend operator, we first must define a sigmoid function 𝜎(𝑥) that

is scaled to have the following properties:

lim
𝑥→−∞

𝜎(𝑥) = 0

𝜎(0) =
1

2

lim
𝑥→∞

𝜎(𝑥) = 1

One such function is:

𝜎(𝑥) =
tanh(𝑥) + 1

2
(4.19)

Then, we can define the blend operator as a sigmoid-weighted linear combination

of the two sides of the discontinuity:

blend
(︀
𝑓1, 𝑓2, 𝑠;𝑥

)︀
= 𝜎

(︀
𝑠(𝑥)

)︀
· 𝑓1(𝑥) +

[︁
1− 𝜎

(︀
𝑠(𝑥)

)︀]︁
· 𝑓2(𝑥) (4.20)

where:𝑓1(𝑥) = The function on one side of the discontinuity

𝑓2(𝑥) = The function on the other side of the discontinuity

𝑠(𝑥) = A ”switch” function that acts as the conditional statement, depending

on its value. Hardness can be controlled by linear scaling of 𝑠(𝑥).

The blend operator does not preserve convexity as softmax does, but it has the

benefit of yielding a general approximation for a much broader set of discontinuous

problems. The blend operator is a generalization of the first approximation to |𝑥|

given in Eq. 4.17, so its graphical characteristics can be examined in the 𝑓1(𝑥) trace
29implemented as aerosandbox.numpy.softmax
30implemented as aerosandbox.numpy.blend
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of Figure 4-8.

4.6 Nonlinear Feasibility Problems and SAND Archi-

tectures

A general nonlinear optimization framework such as AeroSandbox has utility far

beyond ordinary optimization problems, as many workhorse algorithms of scientific

computing can be efficiently reframed as nonlinear optimization problems.

Here, we examine the common problem of solving an implicit system of gov-

erning nonlinear equations. This task is effectively synonymous with engineering

analysis: nearly all analyses can be distilled into solving a system of nonlinear equa-

tions. In a general sense, this analysis problem can be written as a root-finding

problem for the vector-valued function 𝑔:

�⃗� ∈ R𝑛

�⃗� : R𝑚 → R𝑛

�⃗�(�⃗�) = 0⃗ =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔1(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

𝑔2(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

. . .

𝑔𝑚(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

(4.21)

This can be rewritten as an optimization problem with equality constraints and

no objective:

minimize
�⃗�

0

subject to �⃗�(�⃗�) = 0⃗

(4.22)

This type of optimization problem is known as a feasibility problem, where the
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goal is to find any feasible solution. This corresponding feasibility problem shown in

Eq. 4.22 encodes the same problem information as the original nonlinear system, yet

it generalizes the notion of a nonlinear solve to allow many powerful new features.

First, we consider that the original nonlinear problem given in Eq. 4.21 would

likely be solved with a Newton iteration method, which tends to be the most efficient

choice for large, strongly-coupled problems. A classical Newton’s method requires

several specific properties: 𝑚 = 𝑛, and the Jacobian matrix must be invertible at

every step of the iterative solve31.

Assume these properties hold. Then, if the corresponding optimization problem

in Eq. 4.22 is given to a modern 2nd-order gradient-based optimizer (such as IPOPT

via AeroSandbox), it will also be directly solved with a Newton system (after the

Lagrangian is formed) to yield the same result as Eq. 4.21. Therefore, although Eq.

4.22 perhaps appears more complex than Eq. 4.21, computational performance on

these two problems is essentially identical.

The power of the optimization approach shows when the problem is less well-

behaved and these conditions for a classical Newton’s method are not satisfied.

In the case of an underconstrained system (generally 𝑚 < 𝑛), the optimization

frameworks allows a solution to be found, even though the solution is not unique.

If desired, the solution can be made unique by adding an objective function that

applies weak optimization pressure in a given direction; this essentially ”selects” a

desired solution from the set32 of all feasible ones.

In the case of an overconstrained system (𝑚 > 𝑛), Eq. 4.22, the optimization

framework allows the constraints to be relaxed in a variety of ways. The objective

can be used to regularize the system as desired, including common examples such

as:

31These requirements can be alleviated with modified Newton methods that use generalized
inverses.

32generally uncountably infinite
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min
�⃗�

𝑚∑︁
𝑖=1

𝑔𝑖(�⃗�)
2

𝐿2-minimization of �⃗�(�⃗�):

min
�⃗�, �⃗�

𝑛∑︁
𝑗=1

𝑦𝑗

s.t. �⃗� ≥ �⃗�(�⃗�),

�⃗� ≥ −�⃗�(�⃗�)

𝐿1-minimization of �⃗�(�⃗�):

min
�⃗�, 𝑦

𝑦

s.t. 𝑦 ≥ �⃗�(�⃗�),

𝑦 ≥ −�⃗�(�⃗�)

𝐿∞-minimization of �⃗�(�⃗�):

Figure 4-10: Methods of regularizing overconstrained nonlinear systems using

various norm metrics.

In both the underconstrained and overconstrained case, an optimization formu-

lation lets us regularize our ill-posed original nonlinear system into a well-posed

optimization problem, with no loss in computational speed.

4.6.1 Simultaneous Analysis and Design (SAND)

However, perhaps the most powerful feature of moving nonlinear systems of equa-

tions into the constraints of an optimization problem is that it lets us arbitrarily

combine many nonlinear analyses. And, because a design optimization problem can

be thought of as an underconstrained analysis, we can once again use the objective

function to ”select” an optimal design from the set of feasible designs.

This technique is aptly known as Simultaneous Analysis and Design (SAND), as

it essentially embeds the engineering analyses required for design optimization

into the optimization problem itself: analyses and cross-discipline relationships are

enforced implicitly via equality constraints.

The SAND paradigm, which was pioneered by Haftka [20], is an extremely

efficient way to address the coupling problems of aerospace design optimization

that were described in Section 2.3. To understand the efficiency benefit of SAND,

we must consider its alternative: the more straightforward nested optimization

architecture.

In a nested architecture, an optimizer is simply wrapped around an existing
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analysis code. As the optimizer iterates, this analysis code (which, for generality, is

assumed to be nonlinear) will perform subiterations at each iteration in order to

satisfy its governing equations. This is quite wasteful, as computational power is

spent satisfying governing equations to precise tolerances early in the optimization

process when the design is far from optimal.

By contrast, a SAND architectures solves for both optimality33 and feasibility (i.e.

satisfaction of the governing equations) simultaneously. This is more theoretically

sound, as it recognizes the observation that feasibility without optimality is unin-

teresting, and optimality without feasibility is uninteresting. Additionally, SAND

is much more computationally efficient than nested optimization in practice, as it

eliminates internal closure loops and subiteration.

Of course, the drawback of a SAND architecture is that it does not work on black-

box models: the governing equations must be directly accessible to the optimizer

in order to include them in the constraints. However, because this requirement is

identical to the glass-box requirement of automatic differentiation, this does not

present a new restriction in the case of a differentiable optimization environment

like AeroSandbox.

4.7 Integrators: Solving ODEs with AeroSandbox

One category of governing equation that we often wish to solve using a SAND ar-

chitecture is an ordinary differential equation (ODE). ODEs appear in many aircraft

design optimization problems where dynamics or mission profile are important. As

discussed in Section 2.1, this represents the vast majority of aerospace cases.

In the case of an ODE, the idea of using a SAND architecture essentially entails

formulating an implicit integration scheme where relations between timesteps are

posed as equality constraints.

33or more precisely, dual feasibility
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4.7.1 Example: Falkner-Skan ODE

These principles can be demonstrated on an aerospace analysis example by solving

the Falkner-Skan boundary layer equation. The Falkner-Skan boundary layer equa-

tion describes the velocity profile of viscous flow within a self-similar boundary

layer, under the assumption that the edge velocity of the boundary layer follows

some power law with respect to downstream distance. The equation, which is

described more fully by Drela [16], can be written as:

Falkner-Skan Boundary Layer Problem

Solve for 𝐹 (𝜂), given the governing ODE:

𝐹 ′′′ +
1 + 𝑎

2
(𝐹 · 𝐹 ′′) + 𝑎

[︀
1− (𝐹 ′)2

]︀
= 0 (4.23)

with boundary conditions:

𝐹 (0) = 0

𝐹 ′(0) = 0

𝐹 ′(∞) = 1, which we approximate as 𝐹 ′(10) = 1

where: 𝜂 = The nondimensionalized distance from the wall

( )′ = A derivative with respect to 𝜂

𝐹 (𝜂) = The nondimensionalized total mass flow rate between the

wall and 𝜂

𝐹 ′(𝜂) = The nondimensionalized velocity profile; 𝐹 ′ = 𝑢/𝑢𝑒

𝐹 ′′(𝜂) = The nondimensionalized shear profile

𝑎 = A known constant that describes the edge velocity profile

as 𝑢𝑒 ∝ 𝑥𝑎, with 𝑎 ≥ −0.0904 knowna

aA separation singularity occurs below this value.

The Falkner-Skan equation is chosen because it shares many qualities typical of

ODEs in engineering systems:

• It is nonlinear
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• It is higher-order (third-order, specifically)

• It is a boundary value problem rather than an initial value problem, so explicit

solution is difficult34.

Solving the ODE

To solve this ODE within an optimization framework, we first make the observation

that the Falkner-Skan equation (like all higher-order ODEs) can be split apart into a

system of coupled first-order ODEs. Then, using a change of variables and algebraic

manipulation, we canwrite the equivalent ODE system of three first-order equations:

d𝐹
d𝜂 = 𝑈

d𝑈
d𝜂 = 𝑆

d𝑆
d𝜂 = −1 + 𝑎

2
𝐹𝑆 − 𝑎(1− 𝑈2)

(4.24)

with boundary conditions:

𝐹 (0) = 0

𝑈(0) = 0

𝑆(10) = 1

Suppose that we wish to solve this ODE for 𝑎 = 0.1 using the AeroSandbox

optimization framework. The AeroSandbox optimization stack has bespoke meth-

ods35 which declare new variables as derivatives of existing variables and constrain

existing variables. By default, these implement a direct trapezoidal collocation

method for integration, following the principles described by Kelly [26]. The result

is that this complicated ODE can be solved with sophisticated methods in less than

30 lines of code in AeroSandbox, as demonstrated in Listing 3.

We require an initial guess, and for that we guess a parabolic velocity profile
34Eq. 4.23 can be solved with explicit integration using a shooting method as described by Kelly

[26], but is extremely unstable due to the high ODE order and nonlinearity of the Falkner-Skan
equations.

35Opti.derivative_of() and Opti.constrain_derivative()
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given by 𝑈(𝜂) = 1− (1− 𝜂/10)2; this is then integrated and differentiated to obtain

guesses for 𝐹 and 𝑆. This system can now be solved, with the resulting 𝐹 , 𝑈 , and

𝑆 arrays are presented in Figure 4-11. We note that despite the fact that this is

a third-order boundary value problem and therefore prone to divergence upon

explicit integration, the implicit SAND approach shown in Listing 3 handles it fine,

converging in only 4 iterations.

1 import aerosandbox as asb
2 import aerosandbox.numpy as np
3
4 opti = asb.Opti() # Initialize an optimization environment.
5
6 a = 0.1
7
8 eta = np.linspace(0, 10, 100) # Discretize 𝜂 ∈ [0, 10] with 100 points.
9

10 F = opti.variable(init_guess=eta + 10 / 3 * (1 - eta / 10) ** 3)
11
12 U = opti.derivative_of(F, with_respect_to=eta,
13 derivative_init_guess=1 - (1 - eta / 10) ** 2
14 )
15 S = opti.derivative_of(U, with_respect_to=eta,
16 derivative_init_guess=0.2 * (1 - eta / 10)
17 )
18
19 opti.constrain_derivative(S, with_respect_to=eta,
20 derivative=-(1 + a) / 2 * F * S - a * (1 - U ** 2)
21 )
22
23 opti.subject_to([ # Implement boundary conditions.
24 F[0] == 0,
25 U[0] == 0,
26 U[-1] == 1,
27 ])
28
29 sol = opti.solve()

Listing 3: The AeroSandbox code to solve the Falkner-Skan system as in Eq. 4.7.1.

87



0.0 0.2 0.4 0.6 0.8 1.0
𝐹 (𝜂), 𝑈(𝜂), 𝑆(𝜂)

0

1

2

3

4

5

𝜂
Solution for 𝑎 = 0.1

𝐹 (𝜂)

𝑈(𝜂)

𝑆(𝜂)

0.0 0.2 0.4 0.6 0.8 1.0
𝑈(𝜂)

𝑎
=
−0
.0
90
4

Incipient

separation

Velocity Profile for Various 𝑎
𝑎 = −0.09

𝑎 = 0.0

𝑎 = 0.5

𝑎 = 1.0

𝑎 = 1.5

𝑎 = 2.0

Falkner-Skan Solutions

Figure 4-11: Solutions of the Falkner-Skan system in Eq. 4.7.1 from the code in

Listing 3.

Inverse Analysis

However, the power of ODE analysis in a SAND architecture extends far beyond

simply solving the ODE. Here, we demonstrate this by turning the problem around

and performing inverse analysis.

Referring to Figure 4-11, we notice that an interesting phenomenon is occurring

for the 𝑎 ≈ −0.0904 case. This is an incipient separation flow, which can be identified

from the fact that the nondimensional wall shear 𝑆(𝜂) = d𝑈
d𝜂 at the wall (𝜂 = 0) is

approaching zero.

However, the value of 𝑎 for this incipient separation flow is only approximate,

and it was found by trial and error. Suppose we now ask: at what exact value of 𝑎

does the flow separate, as indicated by exactly zero wall shear 𝑆(0) = 0?

88



If this ODE had been solved with traditional methods, answering this question

would be quite laborious - even in an implicit method, tracing a residual equation 𝑎

manually would be very tedious. We could look to trial and error, but we run into a

complication: for 𝑎 < −0.0904, no solution exists, so trial and error is cumbersome.

This is common in engineering models - often the forward problem is well-posed,

but the inverse problem is not.

However, we can solve this inverse design problem extremely easily in a SAND

framework such AeroSandbox, here with the addition of only two lines of code. To

modify Listing 3 to solve this inverse problem:

1. We replace the a = 0.1 line with a new variable definition:

1 a = opti.variable(init_guess=1)

2. We simply add a wall shear constraint:

1 opti.subject_to(S[0] == 0)

After these modifications, we can obtain the value of 𝑎 at incipient separation to

near machine precision without any trial and error or manual derivation of residual

Jacobians. All of these numerics are abstracted by the AeroSandbox solver, which

critically lets the user focus on the engineering problem rather than the numerical

implementation.

This inverse analysis that is demonstrated here occurs all the time in engineering.

For example: one might analyze an airfoil at an angle of attack 𝛼 = 5∘ and find a

lift coefficient 𝐶𝐿 = 0.6; this is the forward problem. If we then wish to compute

the angle of attack that would yield 𝐶𝐿 = 0.5, we must solve the inverse problem

to ”go backwards” through this analysis. Inverse analysis is often quite tedious to

implement without the abstracted approach used here, but it is easily implemented

in AeroSandbox.
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Chapter 5

Modeling Tools

5.1 Surrogate Modeling Tools

It is critical that a general-purpose framework for engineering design optimization

such as AeroSandbox allows the use of user-defined physics models. These models

can generally be classified into one of three categories:

1. Analytical models, which are often derived theoretically and can be specified

concisely in closed-form. For example, an analytical relation for aircraft drag,

as given by Drela [12] is:

𝐶𝐷(A, 𝑆, . . . ) =
CDA0

𝑆
+ 𝑐𝑑(𝐶𝐿,Re, 𝜏) +

𝐶2
𝐿

𝜋A
(5.1)

where: 𝐶𝐷 = Drag coefficient

A = Aspect ratio

𝑆 = Wing area

CDA0 = Fuselage drag area

𝑐𝑑 = Profile drag coefficient

𝐶𝐿 = Lift coefficient

Re = Reynolds number

𝜏 = Taper ratio

2. Expensive models that are the result of laborious, black-box external compu-

tation. Examples of this might include:

• A RANS CFD code, or other analysis that requires the solution of 3D

nonlinear PDEs
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• Aerostructural analysis with explicit time-domain dynamics

• An external code that computes engine performancewith non-equilibrium

gas dynamics

3. Data-driven models, where the underlying input to the model is not a set of

equations but rather a dataset. Common sources of this data include wind

tunnel runs, meteorological data, or experimental testing on prototype com-

ponents.

Analytical models are trivially implemented into a differentiable optimization

framework such as AeroSandbox using the techniques described in Chapter 4. How-

ever, the remaining two categories cannot generally be used in a straightforward

way.

In the case of expensive models, there are two key problems that make direct

implementation unattractive. First, black-box functions break the differentiability

trace, so they must be re-coded from scratch in a differentiable numerics framework.

Although this is usually possible, it can be tedious. Secondly, expensive models in a

SAND framework may yield an optimization problem that takes many minutes or

hours to solve, precluding the practice of interactive design.

Data-driven models also come with their own set of challenges. First, one must

obtain data of sufficient quantity (it spans the input space of the model) and quality

(the data has minimal noise). Secondly, one must form some kind of strategy to

evaluate the model between known data points (interpolation) and beyond known

data (extrapolation).

Both expensive models and data-driven models can be implemented into a

differentiable optimization framework using surrogate modeling. Surrogate modeling

is a collection of techniques that aims to replace an expensive, data-driven, or

otherwise unusable model with a differentiable, cheaply-evaluated model that

approximates the original one.

There are two general approaches to surrogate modeling: fitting and interpolation.

Fitting aims to replace an expensive model or dataset with an analytical expres-
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sion. Interpolation forgoes the need for an explicit analytical expression, instead

interpolating from known data points using a piecewise spline.

The present work provides computational tools for surrogate modeling using

both of these approaches. In the following section, we detail both of these. We

restrict our focus here to models of the form 𝑓 : R𝑛 → R1, because these are by

far the most common types of models, and because vector-valued functions can be

constructed by combining several scalar-valued functions.

5.1.1 Fitted Models

One approach to creating a surrogate model is curve fitting, or more formally,

regression. Fitting is the process of deriving an analytical model that approximates a

function from which samples have been drawn. An infinite number of fitted models

could be regressed from a given dataset, and choosing which of these models is best

is an optimization problem. Specifically, we can write the fitting problem as follows,

following notation from [29]:

The Canonical Fitting Problem (Least-squares Regression)

We are given a dataset that consists of𝑚 entries. Each entry maps from

�⃗� ∈ R𝑛 to 𝑦 ∈ R1. We collectively refer to the inputs and outputs of the

dataset as X and �⃗�, respectively.

A model format is also provided, which includes some unknown

parameters 𝜃. We then denote the model outputs as:

�⃗�model = model
(︀
X, 𝜃

)︀
(5.2)

The error of this model at each of the𝑚 data points is then:

�⃗� = �⃗�model − �⃗�

We then seek the optimal value of the model parameters 𝜃 by solving

the following optimization problem:
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𝜃* = arg min
𝜃

⃦⃦
�⃗�
⃦⃦
2 (5.3)

The vector norm in the objective Eq. 5.3 can be rewritten as
⃦⃦
�⃗�
⃦⃦
2
=√︀∑︀𝑚

𝑖=1 𝑒
2
𝑖 . Because the square root function is monotonic in the posi-

tive domain, it can be removed without changing the value of 𝜃*. This

is convenient, as the objective function now tends to be more closely

approximated by a quadratica, dramatically improving numerical per-

formance. Therefore, the fitting problem can be expressed as:

𝜃* = arg min
𝜃

𝑚∑︁
𝑖=1

𝑒2𝑖 (5.4)

aIn the case of linear least-squares regression, the objective is now exactly quadratic
and admits closed-form solution.

This forms the canonical fitting problem, also known as least-squares regression.

Because Equation 5.3 is an optimization problem with entirely glass-box functions,

it is efficiently differentiated and solved by AeroSandbox. This functionality is pro-

vided by the asb.FittedModel class, which acts both as the fitting solver (performed

upon instantiation) and the callable model itself.

The generality of the model format in Eq. 5.2 is quite powerful, as the fitting

routine presented here can use any composition of elementary operators as its model

format. In addition, this optimization approach can fit piecewise functions and

expressions that can only be tractably expressed in code (e.g., model formats with

loops, complicated conditionals). The AeroSandbox FittedModel implementation

can also be used to fit datasets with general multidimensional inputs. Furthermore,

because the fitting optimization problem can utilize fast gradients via automatic

differentiation, fitting performance scales efficiently with parameter dimensionality1.

1analogous to the scaling seen in Figure 4-3
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Example: Wind Analysis

The power of this generality is demonstrated in Figure 5-1, where the AeroSandbox

FittedModel routine is used to regress a model for peak2 wind speeds at various

points in the atmosphere above the continental United States in August3. This model

holds great importance for high-altitude long-endurance (HALE) aircraft design:

the primary failure mode of HALE aircraft in the past two decades has been in-flight

aerostructural failure following excitation via wind gusts. The underlying 2D dataset

in this example was obtained via statistical analysis of the ERA5 Global Reanalysis

meteorological dataset [22].

2Quantified as the 99th-percentile of wind speed over time
3Averaged over years 1979-2020
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Figure 5-1: An demonstration of asb.FittedModel, where an 18-parameter analytical

model is fitted to a multidimensional, aerospace-relevant example dataset.

There is a clear and strong nonlinearity present in this dataset, evidenced by

the sharp rise in peak wind speeds near (15 km altitude, 50 deg. N latitude). This

nonlinearity, which depicts the Arctic polar vortex of the jet stream, makes this a

challenging dataset to fit. Here, an 18-parameter model consisting of a combination

of polynomials and Gaussian-like terms was used to fit the data.

The resulting model from this fitting process is not only cheaply evaluated,

but it is also end-to-end automatic differentiable. This means that it can be used

as desired in the optimization framework described in Chapter 4. Fitting also

tends to remove noise from the dataset, which makes optimization much more

well-behaved. This noise rejection occurs because the fit is essentially a projection
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of the dataset noise (generally relatively high-spatial-frequency4) onto the mode

shapes associated with model linearization with respect to 𝜃 (generally relatively

low-spatial-frequency). Because of these desirable properties, curve fitting is a good

tool for creating surrogate models from experimental or synthetic datasets.

The classical ordinary least-squares fitting problem described in Equation 5.3 can

be extended in several interesting ways in order to obtain fits with more desirable

characteristics. Several of these generalizations have been implemented into the

AeroSandbox surrogate modeling toolkit via the asb.FittedModel class. These

features are described in the following sections.

Generalization to Various 𝐿𝑝 Norms

The fitting problem specified in Eq. 5.3 minimizes the 𝐿2 norm of the error vector �⃗�,

a process known as least-squares fitting. This fitting problem can be generalized by

instead minimizing various 𝐿𝑝 norms of the error vector. In general, the 𝐿𝑝 norm of

the error vector can be expressed as:

⃦⃦
�⃗�
⃦⃦
𝑝
=

(︂ 𝑚∑︁
𝑖=1

𝑒𝑝𝑖

)︂1/𝑝

, 𝑝 ∈ [1,∞) (5.5)

By analogy to Eq. 5.4, the fit optimization problem associated with this equation is

often solved more easily after elimination of the (monotonic) root function.

Of particular interest are the 𝐿1 and 𝐿∞ norms, which can be expressed in special

form derived from limit analysis of Eq. 5.5:

⃦⃦
�⃗�
⃦⃦
1
=

𝑚∑︁
𝑖=1

|𝑒𝑖|
⃦⃦
�⃗�
⃦⃦
∞ = max

(︀
|𝑒1|, |𝑒2|, . . . , |𝑒𝑚|

)︀
These norms are of special interest for two reasons. First, they represent the extremes

of the 𝐿𝑝 norm family. Secondly, the fitting problem associated with them can be

more efficiently expressed with a reasonable5 number of constraints6, as shown by

4In the common case of uncorrelated random error, the noise follows a white noise spectrum
5more precisely, a finite number of constraints that is of 𝒪(𝑚)
6and in particular, linear constraints in the case of linear regression
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analogy to Figure 4-10.

The primary practical distinction between fits using these various norms is their

response to outliers. This is demonstrated in Figure 5-2, where fits are made to a

synthetic example dataset that contains an outlier. The 𝐿1 fit largely eschews the

influence of the outlier, essentially discarding the outlier as a systematic error rather

than a random one. The 𝐿∞ fit is the opposite, as it seeks to minimize the maximum

deviation; essentially this treats the outlier as a random error that still conveys useful

information about the underlying model.
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Figure 5-2: Fitting with various norms on a synthetic dataset with an outlier.

Neither approach is universally superior; they simply represent different prior

beliefs about the likely source of error as a function of model deviation. Surrogate

modeling from a synthetic dataset derived from high-fidelity computational sim-

ulation is likely best served by 𝐿∞ fitting, as the noise in the dataset is generally

assumed to be zero. The 𝐿∞ fit will enforce the tightest possible bound on the

deviation from the high-fidelity dataset.
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On the other hand, an 𝐿1 fit might be expected to produce superior results for

an experimental dataset. This is because the systematic errors sometimes found in

experiment can yield outliers that convey no useful information about the underlying

physics. The example dataset in Figure 5-2, which simulates an experimental dataset

with measurement dropout, is clearly better served by the robust 𝐿1 fit.

Parameter and Model Bounds

Another useful feature of the AeroSandbox fitting submodule is the ability to easily

perform constrained fitting. This can take two forms:

1. Parameter bounds: the vector of fit parameters 𝜃 can be directly given bounds

constraints, which can be used to stabilize the fit process on nonconvex prob-

lems.

2. Model bounds: the error vector �⃗� can be constrained such that the fittedmodel

represents either an upper or lower bound on the dataset. This is quite useful

in engineering practice, as it allows the creation of surrogatemodels that can be

guaranteed to be conservativewith respect to the original dataset. This reduces

the likelihood that an optimization problem that includes a fitted model will

result in an optimum that is infeasible according to the true underlying physics.

This second process of addingmodel bounds is demonstrated in the fits in Figure

5-3. Here, a drag polar for a SD7032 airfoil at Re = 106 is fit using asb.FittedModel

and a quadratic model. This quadratic model is a common approximation for an

airfoil’s profile drag polar; for example, this approximation is seen in the QProp

propeller design code by Drela [11]. Here, using an upper-bound fit tomodel profile

drag means that downstream optimization using this model will be more robust to

surrogate modeling error.
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Figure 5-3: Robust fitting of an example drag polar with model bounds.

Log-transformed Errors

A final note here is that many outputs of engineering models are more physically

relevant when considered in a log-transformed sense. In other words, the goodness

of fit is a function of the relative (multiplicative) error rather than the absolute

(additive) error.

A common example quantity that demonstrates this phenomenon is aerody-

namic drag, which tends to approximately follow a power law with respect to

Reynolds number. For illustration, we consider the case of the drag coefficient on a

cylinder in crossflow. Experimental data plotted in Panton [36] (reproduced here in

Fig. 5-4) found drag coefficients ranging from approximately 0.25 to 500, depending

on Reynolds number. Indeed, in the Re → 0 (i.e. Stokes flow) limit, this drag

coefficient exactly follows a power law and is unbounded7.
7This is because the drag force 𝐷 becomes linearly proportional to the freestream velocity 𝑈∞ in

the Stokes limit, rather than the usual 𝐷 ∝ 𝑈2
∞.
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Using the AeroSandbox fitting module, a relatively parsimonious analytical

model can be fit that accurately predicts (and extrapolates) cylinder drag for any

Reynolds number. Surprisingly, the author has not found any other such universal

model for cylinder drag in the literature.

Because of the logarithmic importance of drag coefficient, we instruct the fitting

module asb.FittedModel to minimize the log-transformed error of the fit with

respect to the experimental dataset, rather than the error itself8. The resulting model

is as follows:

Cylinder Drag Fitted Model

First, models for subcritical (i.e., below drag crisis) and supercritical

drag are computed:

𝑟 = log10(Re)

𝐶𝐷, subcrit = 10−0.6739𝑟+1.0355 + 0.6325 + 0.1006𝑟

log10(𝐶𝐷, supercrit) = −0.1200− 0.04615 ln
[︂
exp

(︀
10 · (6.7016− 𝑟)

)︀
+ 1

]︂

Then, these equations are blended together using a sigmoid:

𝜎(𝑟) =
tanh

[︀
12.597 · (𝑟 − 5.547)

]︀
+ 1

2

𝐶𝐷 = 𝜎(𝑟) · 𝐶𝐷, supercrit +
[︀
1− 𝜎(𝑟)

]︀
· 𝐶𝐷, subcrit

(5.6)

The fit of this model to the experimental data from [36] is shown in Figure 5-4.

8This is performed by supplying asb.FittedModel with the
put_residuals_in_logspace=True argument.
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Figure 5-4: Analytical fitting of cylinder drag data from Panton [36]. Fit minimizes

the 𝐿1-norm of log-transformed error.

5.1.2 Interpolated Models

Another approach to creating surrogate models is interpolation. Interpolation for-

goes the need for an analytic expression, instead representing the surrogate model

in the form of a lookup table with rules for computing intermediate values. Interpo-

lation is implemented in AeroSandbox via the syntax asb.InterpolatedModel, with

inputs that are analogous to those for fitted models.

There are several challenges with interpolation that must be addressed in order

to use an interpolated model in a differentiable optimization framework:

1. Interpolated models must be at least 𝐶1-continuous, following the logic in

Section 4.5.2. This means that many common interpolation techniques, such

as linear interpolation, are not permissible. In AeroSandbox, this is solved

by defaulting to a b-spline interpolation that consists of piecewise cubic poly-

nomial patches; this is therefore a 𝐶2-continuous representation and can be

adequately treated with modern gradient-based optimization algorithms.
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2. Interpolated models must extend to multidimensional datasets with an arbi-

trary number of inputs.

This combination of requirements is quite tricky to satisfy, and hence few under-

lying packages support this. For example, the SciPy library that forms the standard

toolbox for scientific computing in Python only supports spline interpolation on 1D

and 2D datasets [39]. Thankfully, the CasADi automatic differentiation library [3]

includes routines that enable 𝑛-dimensional spline interpolation, so these have been

wrapped for use in AeroSandbox.

These 𝑛-dimensional spline interpolators are demonstrated in Figure 5-5, where

a synthetic dataset depicting lift of a SD7032 airfoil is turned into a surrogate model

using the AeroSandbox interpolator library. Here, the𝐶2 continuity of the piecewise-

cubic interpolation is clearly visible.
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Figure 5-5: An interpolated model for airfoil 𝐶𝐿 from a multidimensional dataset

computed by XFoil [9].

This lookup-table approach to surrogate modeling is quite convenient to use

when compared to the fitting approach described in Section 5.1.1. With a high-

quality dataset, little-to-no engineering effort is need to create a surrogate model;

by contrast, the fitting approach requires engineering intuition about the type of

analytical model that best describes the data.

However, this interpolation approach is not without drawbacks. First, the b-

spline interpolators implemented in AeroSandbox have no ability to reject noise -

surrogate models will always pass exactly through input data points (as these form

the knots of the spline). Splines also do not preserve monotonicity of the dataset:
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on datasets with low signal-to-noise ratios9, this can lead to wild oscillations as the

interpolator attempts to model the random noise. This can even occur on datasets

with moderate noise if the input space is not appropriately sampled10, a numerical

problem known as Runge’s phenomenon. Noisy datasets can also be effectively

used if they are pre-processed by smoothing with several passes of a Laplacian (i.e.,

”heat equation”) kernel. This process, sometimes referred to as the application of a

Gaussian blur, yields more well-behaved interpolators at the cost of accuracy to the

original dataset.

The lookup-table approach also necessitates the use of structured (i.e., gridded

in 𝑛 dimensions) data, rather than unstructured (i.e., ”point cloud”) data. This

is because the interpolation consists of a collection of piecewise polynomials, and

these polynomials must be linked back to specific knot points (drawn from the

dataset) to determine their shape. With unstructured data, it is quite difficult to

know which knot points should be used for a given polynomial.

Most synthetic datasets (e.g., those from expensive, high-fidelity computational

analysis) tend to be structured, so this is not a problem. Conveniently, these datasets

also tend to lend themselves well to interpolation as they generally have no random

noise.

On the other hand, many experimental datasets tend to be unstructured, which

prohibits the use of AeroSandbox interpolation as-is. Hence, fitting is generally

preferred. Fitting also tends to be a superior choice for experimental datasets due to

their better noise rejection.

In the event that one desires interpolation on an unstructured dataset, an ap-

proach that has been proven successful is to interpolate the unstructured dataset

onto a structured grid using a radial basis function (RBF) interpolator, at which

point the AeroSandbox spline interpolator in asb.InterpolatedModel can be used.

9In particular, this is an issue on some experimental datasets
10Often, typical linear full-factorial sampling is quite a poor choice; using Chebyshev nodes often

produces far superior results for a given number of data points. A fuller description is given in
Chapter 13 of [29].
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Chapter 6

Conclusions

In closing, we summarize contributions made and outline a plethora of potential

avenues for future research built upon principles established here.

6.1 Summary of Contributions

This thesis has demonstrated the advantages of a unified, end-to-end automatic-

differentiable framework for engineering design optimization, with specific applica-

tions to aircraft design. After identifying the key components of such a framework,

we implement such a framework in the form of an open-source Python library called

AeroSandbox. The performance of this tool is demonstrated on several aerospace

design problems throughout Chapter 4, where it outperforms state-of-the-art opti-

mization frameworks in speed while also offering increased modeling flexibility.

In addition to the framework’s high-performance optimization core, we also

present several tools that support model creation for user problems. These models

can then be easily connected to build sophisticated and specialized optimization

tools for various engineering problems.
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6.2 Future Work

While the framework developed in this thesis has strong optimization fundamen-

tals and extensibility, the applications and benchmarks presented in this work are

relatively simple. This increases readability and reproducibility, but it does not fully

illustrate the complexity of design problems that can be solved with this automatic-

differentiable approach. To summarize the ideas for future work, many auspicious

research directions involve developing higher-fidelity differentiable models, inte-

grating with more tools, and providing options to abstract away various common

aerospace operations.

Black-Box Functions and Finite Differencing

As an optimization framework that first-and-foremost emphasizes automatic differ-

entiability of underlying models, AeroSandbox is currently unable to interface with

black-box functions. This is primarily because black-box functions break the trace of

a reverse-mode pass through the computational graph. However, depending on the

location of such a black-box function in the graph, as well as its input and output

dimensionality, black-box functions may still be admissible. The envisioned general

strategy would be to partition the computational graph to isolate the function, and

explicitly chain-rule through each section of the graph. This would require that the

function have a known gradient, which could be either user-provided or estimated

via finite-differencing. (Taken to the extreme, the entire model could be treated in

this way, which would essentially render AeroSandbox an interface to IPOPT.)

Because of the vast number of useful aerospace tools that are not written-in

or easily-convertable-to Python, this would significantly increase the breadth of

models that could be used. However, unless the external tool is itself efficiently

differentiable, the curse of dimensionality described in Section 2.2 would still apply.
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Differentiation Frameworks and Numerical Backends

In AeroSandbox, the CasADi package is used to provide an end-to-end differentiable

backend. There are a few limitations of this backend. Examples of these are the

inability to create arrays with more than two dimensions, unconventional sparse

matrix formats, and no parallelization capabilities (due to inability to serialize graph

structures as-is). Future work here could investigate the possibility of offering the

choice between several numerical backends. While maintaining multiple numerical

backends might initially appear onerous, the isolation of the aerosandbox.numpy

module relative to the rest of the AeroSandbox library could allow these to be

implemented with minimal effort.

Other Python automatic differentiation backends, including JAX and PyTorch,

solve a lot of the issues described with CasADi, and therefore they form good

candidates for inclusion. However, they each have their own limitations as well. JAX

does not have Windows binaries, and its library of differentiable primitive operators

is more limited than CasADi. PyTorch has the troublesome habit of deleting the

computational graph from memory after each backwards pass - a useful feature in

batch machine learning where graphs are different per-batch, but a non-starter in

engineering design optimization where graphs are generally static. Both libraries

have the advantage of more widespread use than CasADi, but they also have the

drawback that they do not include interfaces to second-order gradient-based solvers

such as IPOPT.

Over a much longer horizon, Julia-based automatic differentiation frameworks

(especially Zygote) may become more enticing, contingent on increased maturity

and stability of the core language, user adoption, and development of the scientific

package ecosystem.
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Appendix A

Installation Instructions and Basic

Usage

AeroSandbox is very lightweight, and it can be installed on any machine running a

modern operating system (Windows, Mac, or Linux) in just a few minutes using

the following simple steps.

A.1 Installing Python

AeroSandbox is a Python package, so an installation of Python is required. AeroSand-

box supports Python 3.7 and above, although the latest release is always recom-

mended.

Python can be downloaded and installed from the Python.org website. How-

ever, it is recommended to instead install Python through the Anaconda Distribution,

a distribution of Python that is popular in the scientific computing community and

comes pre-packagedwithmany performance-optimized libraries [2]. TheAnaconda

Distribution is free and open-source for individual use and can be downloaded from

the Anaconda.comwebsite.

When installing, it is recommended that you add the Anaconda Python exe-

cutable (and all other executables in its /bin/ binaries folder) to the system PATH.

This can be done through a checkbox in the installer, or it can be performedmanually

111

Python.org
Anaconda.com


after installation.

Finally, correct installation can be verified by opening a new terminal window1.

If Python has been installed correctly and added to the PATH, you will see a similar

printout upon giving the command python:

1 C:\Users\User>python
2 Python 3.8.8 | packaged by conda-forge | (default, Feb 20 2021,

15:50:08) [MSC v.1916 64 bit (AMD64)] on win32→˓

3 Type "help", "copyright", "credits" or "license" for more information.
4 >>>

To return to the terminal, you can give the quit() command.

A.2 Installing AeroSandbox

Once Python has been installed, installation of AeroSandbox is very straightforward.

Open a new terminal window and give the following command:

1 pip install aerosandbox[full]

Assuming the machine has a working internet connection, this will download

AeroSandbox from the Python Package Index (PyPI) and install it. This concludes a

normal installation.

A.3 Basic Usage

In order to use AeroSandbox, use a text editor or Python IDE2 to create a Python

script file3. Code the optimization problem that you would like to solve; an example

is given in Listing 1. After saving the file, call the Python interpreter on this file by

giving the following terminal command:
1On Windows, Command Prompt is one such terminal.
2PyCharm and VSCode being two popular choices
3.py file extension
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1 python "path/to/my/file.py"

Alternatively, Python IDEs often have a ”Build” or ”Run File” command that

can execute this code via the Python interpreter as well.

A.4 Developer Installation

For developers, the open-source AeroSandbox GitHub repository is available at

https://github.com/peterdsharpe/AeroSandbox.

Any bugs and installation problems should also be reported via issue tickets at

this GitHub repository.

A.5 Versioning

The version of AeroSandbox used in the code listings presented throughout this

thesis is v3.1.3. Because of AeroSandbox’s semantic versioning, compatibility is

expected for all future AeroSandbox v3.x.x versions.

The version of a user installation can be checked at any time with the following

Python code:

1 import aerosandbox as asb
2 print(asb.__version__)

Please report any compatibility problems at the aforementioned GitHub reposi-

tory.
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Appendix B

Design Optimization Rules of Thumb

Here, we present several design optimization guidelines that have been collected

across various studies. These are especially applicable to the conceptual design of

engineering systems, but can be considered in any part of the design cycle:

1. Engineering time is often part of the objective function.

(a) As the saying goes, 80% of the results come from the first 20% of the

work: low-fidelity models go exceptionally far.

(b) Make convenientmodeling assumptions often and judiciously. (Of course,

track these assumptions and revise models if needed.) It is often more

time-efficient to start low-fidelity and only increase fidelity as needed,

rather than vice versa.

(c) Identify sensitive models, requirements, and assumptions, and track the

uncertainty associated with each of these. The vast majority of engineer-

ing time should be spent on refining these sensitive elements.

2. Modeling ”wide” rather than ”deep” often yields more useful design in-

sight.

(a) Generally, the conceptual design studies that are themost practical, useful,

and robust are those thatmodel a vast number of disciplines at lowfidelity,

rather than those that model one or two disciplines at a high fidelity.
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(b) In rare instances where high fidelity is truly required, surrogate modeling

and reduced-order modeling is highly encouraged. It is of paramount

importance that the optimization problem can be solved in seconds or

minutes - if this is not the case, interactive design becomes prohibitively

tedious.

3. Do not blindly trust an optimizer.

(a) An optimizer only solves the problem that you give it. (And this is in

the best case!) Often, it is easy to forget constraints that seem intuitively

obvious.

(b) If any flaw exists in a physics model, the optimizer will exploit it. Models

should extrapolate sensibly and generally be parsimonious. On objective

functions, adding quadratic regularization is an effective last resort.

(c) Without special care, optimized designs are almost always fragile. An

optimizer will tend to naturally drive to the edge of the feasible space.

However, in nature1, optima are usually not near extremes.

4. When an incorrect result is returned, it’s nearly always the ”right solution to

the wrong problem”, rather than the ”wrong solution to the right problem”.

(a) If a strange solution, error, or indication of infeasibility or unboundedness

is reported when this was not expected, this often indicates an error in

problem formulation. Common culprits are forgotten or unnecessary con-

straints, constraints that are unintentionally too loose or tight, duplicated

constraints, etc.

(b) If initial guesses or problem scales are off by many orders of magnitude,

this can also cause convergence issues. Strong nonconvexities (e.g., a

model interpolating noisy data) can also cause problems.

5. Optimization is just one tool in the design toolbox.
1Mother Nature being arguably the most successful optimizer
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(a) An optimizer will answer sizing questions posed by an engineer, but it

will not ask new questions on its own or sanity-check these results.

(b) Design is an interactive process, and a ”push-button” design optimizer

will not exist for the foreseeable future.
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Appendix C

Addenda, Derivations, and Extended

Code

C.1 Constrained Rosenbrock Problem

Here, we derive a closed-form solution to the constrained Rosenbrock problem,

restated from Eq. 4.9 as:

minimize
𝑥, 𝑦

(1− 𝑥)2 + 100(𝑦 − 𝑥2)2

subject to 𝑥2 + 𝑦2 ≤ 1

(C.1)

The objective function, which we denote 𝑓(𝑥, 𝑦) is shown in Figure C-1; the

constraint limits the feasible region to the unit ball.
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Figure C-1: Rosenbrock Function

We find the gradient of 𝑓 to be:

∇𝑓 =

⎡⎣d𝑓
d𝑥
d𝑓
d𝑦

⎤⎦ =

⎡⎣400𝑥(𝑥2 − 𝑦) + 2𝑥− 2

−200𝑥2 + 200𝑦

⎤⎦ (C.2)

Ignoring the constraint to begin, we find the unconstrained critical points by

setting ∇𝑓 = 0⃗. Thus, the d𝑓
d𝑦 = 0 condition yields 𝑥2 = 𝑦, which is substituted into

the remaining equation to yield:

400𝑥(𝑦 − 𝑦) + 2𝑥− 2 = 0 =⇒ 2𝑥− 2 = 0 =⇒ 𝑥 = 1 (C.3)

Given 𝑥 = 1, the d𝑓
d𝑦 = 0 condition implies 𝑦 = 1. Thus, (𝑥, 𝑦) = (1, 1) is the only

critical point of the unconstrained problem.1

Thus, the only critical point for the unconstrained problem lies outside the

1Further analysis or graphical inspection reveals this to be the global minimum of the uncon-
strained problem.
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feasible region. The complementary slackness optimality condition implies that

criticality (∇𝑓 = 0 locally) is a requirement for optimality in the absence of an active

constraint. Thus, we infer that the constrained optimum must lie on the constraint

boundary and that the constraint have a nonzero associated dual variable.

We now prepare to formulate and directly solve optimality conditions including

the constraint using the KKT conditions. We first rewrite the constraint in the form

𝑔(𝑥) ≤ 0, where here, 𝑔(𝑥) = 𝑥2 + 𝑦2 − 1. The constraint gradient is then:

∇𝑔 =

⎡⎣2𝑥
2𝑦

⎤⎦ (C.4)

Now, the optimality conditions can be formed. For the unknowns 𝑥, 𝑦, 𝜆, we

obtain a set of two equations from the stationarity requirement of the Lagrangian:

∇𝑓 + 𝜆∇𝑔(𝑥) = 0⃗ (C.5)

A third equation comes from the constraint itself, which we now know to be

tight:

𝑔(𝑥) = 0 (C.6)

Together:

400𝑥(𝑥2 − 𝑦) + 2𝑥− 2 + 2𝜆𝑥 = 0

−200𝑥2 + 200𝑦 + 2𝜆𝑦 = 0

𝑥2 + 𝑦2 − 1 = 0

(C.7)

This system of three equations does not readily admit an analytic solution, but a

numerical solution can be easily obtained:

𝑥 = 0.7864, 𝑦 = 0.6177, 𝜆 = 0.1215 (C.8)

Finally, we can illustrate the poor scaling in this problem by evaluating the
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condition number of theHessian at the optimum. TheHessianmatrix of the objective

function is found to be:

H =

⎡⎣ d2𝑓
d𝑥2

d2𝑓
d𝑥d𝑦

d2𝑓
d𝑥d𝑦

d2𝑓
d𝑦2

⎤⎦ =

⎡⎣1200𝑥2 − 400𝑦 + 2 −400𝑥

−400𝑥 200

⎤⎦ (C.9)

Which, evaluated at the optimum of (𝑥, 𝑦) = (0.7864, 0.6177) yields:

H ≈

⎡⎣ 497 −315

−315 200

⎤⎦ (C.10)

After eigenvalue factorization, we evaluate the condition number to find:

cond(H) ≈ 1054 (C.11)

C.2 Simple Wing

The SimpleWing problemdescribed in Section 4.3.1 can be solved using the following

AeroSandbox code:

1 import aerosandbox as asb
2 import aerosandbox.numpy as np
3
4 ### Constants
5 form_factor = 1.2 # form factor [-]
6 oswalds_efficiency = 0.95 # Oswald efficiency factor [-]
7 viscosity = 1.78e-5 # viscosity of air [kg/m/s]
8 density = 1.23 # density of air [kg/m^3]
9 airfoil_thickness_fraction = 0.12 # airfoil thickness to chord ratio

[-]→˓

10 ultimate_load_factor = 3.8 # ultimate load factor [-]
11 airspeed_takeoff = 22 # takeoff speed [m/s]
12 CL_max = 1.5 # max CL with flaps down [-]
13 wetted_area_ratio = 2.05 # wetted area ratio [-]
14 W_W_coeff1 = 8.71e-5 # Wing Weight Coefficient 1 [1/m]
15 W_W_coeff2 = 45.24 # Wing Weight Coefficient 2 [Pa]
16 drag_area_fuselage = 0.031 # fuselage drag area [m^2]
17 weight_fuselage = 4940.0 # aircraft weight excluding wing [N]
18
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19 opti = asb.Opti() # initialize an optimization environment
20
21 ### Variables
22 aspect_ratio = opti.variable(init_guess=10) # aspect ratio
23 wing_area = opti.variable(init_guess=10) # total wing area [m^2]
24 airspeed = opti.variable(init_guess=100) # cruising speed [m/s]
25 weight = opti.variable(init_guess=10000) # total aircraft weight [N]
26 CL = opti.variable(init_guess=1) # Lift coefficient of wing [-]
27
28 ### Models
29 # Aerodynamics model
30 CD_fuselage = drag_area_fuselage / wing_area
31 Re = (density / viscosity) * airspeed * (wing_area / aspect_ratio) **

0.5→˓

32 Cf = 0.074 / Re ** 0.2
33 CD_profile = form_factor * Cf * wetted_area_ratio
34 CD_induced = CL ** 2 / (np.pi * aspect_ratio * oswalds_efficiency)
35 CD = CD_fuselage + CD_profile + CD_induced
36 dynamic_pressure = 0.5 * density * airspeed ** 2
37 drag = dynamic_pressure * wing_area * CD
38 lift_cruise = dynamic_pressure * wing_area * CL
39 lift_takeoff = 0.5 * density * wing_area * CL_max * airspeed_takeoff **

2→˓

40
41 # Wing weight model
42 weight_wing_structural = W_W_coeff1 * (
43 ultimate_load_factor * aspect_ratio ** 1.5 *
44 (weight_fuselage * weight * wing_area) ** 0.5
45 ) / airfoil_thickness_fraction
46 weight_wing_surface = W_W_coeff2 * wing_area
47 weight_wing = weight_wing_surface + weight_wing_structural
48
49 ### Constraints
50 opti.subject_to([
51 weight <= lift_cruise,
52 weight <= lift_takeoff,
53 weight == weight_fuselage + weight_wing
54 ])
55
56 ### Objective
57 opti.minimize(drag)
58
59 sol = opti.solve()
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C.3 Simple Aircraft (SimpleAC)

The Simple Aircraft (SimpleAC) problem described in Section 4.3.3 can be solved

using the following AeroSandbox code:

1 import aerosandbox as asb
2 import aerosandbox.numpy as np
3
4 opti = asb.Opti()
5
6 ### Env. constants
7 g = 9.81 # gravitational acceleration, m/s^2
8 mu = 1.775e-5 # viscosity of air, kg/m/s
9 rho = 1.23 # density of air, kg/m^3

10 rho_f = 817 # density of fuel, kg/m^3
11
12 ### Non-dimensional constants
13 C_Lmax = 1.6 # stall CL
14 e = 0.92 # Oswald's efficiency factor
15 k = 1.17 # form factor
16 N_ult = 3.3 # ultimate load factor
17 S_wetratio = 2.075 # wetted area ratio
18 tau = 0.12 # airfoil thickness to chord ratio
19 W_W_coeff1 = 2e-5 # wing weight coefficient 1
20 W_W_coeff2 = 60 # wing weight coefficient 2
21
22 ### Dimensional constants
23 Range = 1000e3 # aircraft range, m
24 TSFC = 0.6 / 3600 # thrust specific fuel consumption, 1/sec
25 V_min = 25 # takeoff speed, m/s
26 W_0 = 6250 # aircraft weight excluding wing, N
27
28 ### Free variables (same as SimPleAC, with extraneous variables removed)
29 AR = opti.variable(init_guess=10, log_transform=True) # aspect ratio
30 S = opti.variable(init_guess=10, log_transform=True) # total wing area,

m^2→˓

31 V = opti.variable(init_guess=100, log_transform=True) # cruise speed,
m/s→˓

32 W = opti.variable(init_guess=10000, log_transform=True) # total
aircraft weight, N→˓

33 C_L = opti.variable(init_guess=1, log_transform=True) # lift
coefficient→˓

34 W_f = opti.variable(init_guess=3000, log_transform=True) # fuel weight,
N→˓
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35 V_f_fuse = opti.variable(init_guess=1, log_transform=True) # fuel
volume in the fuselage, m^3→˓

36
37 ### Wing weight
38 W_w_surf = W_W_coeff2 * S
39 W_w_strc = W_W_coeff1 / tau * N_ult * AR ** 1.5 * np.sqrt(
40 (W_0 + V_f_fuse * g * rho_f) * W * S
41 )
42 W_w = W_w_surf + W_w_strc
43
44 ### Entire weight
45 opti.subject_to(W >= W_0 + W_w + W_f)
46
47 ### Lift equals weight constraint
48 opti.subject_to([
49 W_0 + W_w + 0.5 * W_f <= 0.5 * rho * S * C_L * V ** 2,
50 W <= 0.5 * rho * S * C_Lmax * V_min ** 2,
51 ])
52
53 ### Flight duration
54 T_flight = Range / V
55
56 ### Drag
57 Re = (rho / mu) * V * (S / AR) ** 0.5
58 C_f = 0.074 / Re ** 0.2
59
60 CDA0 = V_f_fuse / 10
61
62 C_D_fuse = CDA0 / S
63 C_D_wpar = k * C_f * S_wetratio
64 C_D_ind = C_L ** 2 / (np.pi * AR * e)
65 C_D = C_D_fuse + C_D_wpar + C_D_ind
66 D = 0.5 * rho * S * C_D * V ** 2
67
68 opti.subject_to(W_f >= TSFC * T_flight * D)
69
70 V_f = W_f / g / rho_f
71 V_f_wing = 0.03 * S ** 1.5 / AR ** 0.5 * tau
72
73 V_f_avail = V_f_wing + V_f_fuse
74
75 opti.subject_to(V_f_avail >= V_f)
76
77 opti.minimize(W_f)
78
79 sol = opti.solve()
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C.4 Discontinuities at Non-Optimal Points

Continuing from Section 4.5.2, we note that discontinuity and non-differentiability

is still admissible if it does not occur at the optimum. For example, we can pose the

following problem, which has countably infinite non-continuous, non-differentiable

points:

minimize
𝑥

𝑥 ·
⌊︂
𝑥+

1

2

⌋︂
+

1

10
𝑥2 (C.12)

where the objective function and its derivative are visualized in Figure C-2. This

problem is easily solved as-written in AeroSandbox, because the region surrounding

the optimum (𝑥 = 0, 𝑓(𝑥) = 0) is locally 𝐶1-continuous. Convergence is easily

achieved even if the initial guess is one of these discontinuous points: with an initial

guess of 𝑥0 = 10.5, solution is achieved in just 6 iterations.
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Figure C-2: Illustration of the function in Eq. C.12, which exhibits an infinite number

of discontinuities in value and derivative.
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